
International Journal of Automotive Technology, Vol. 14, No. 1, pp. 113−122 (2013)
DOI 10.1007/s12239−013−0013−3

Copyright © 2013 KSAE/ 069−13

pISSN 1229−9138/ eISSN 1976−3832

113

REAL-TIME VISION-BASED BLIND SPOT WARNING SYSTEM:

EXPERIMENTS WITH MOTORCYCLES IN

DAYTIME/NIGHTTIME CONDITIONS

C. FERNÁNDEZ, D. F. LLORCA*, M. A. SOTELO, I. G. DAZA, 

A. M. HELLÍN and S. ÁLVAREZ

Computer Engineering Department, University of Alcalá, Escuela Politécnica, Campus Universitario,
Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares (Madrid), Spain

(Received 1 July 2011; Revised 8 October 2012; Accepted 11 October 2012)

ABSTRACT−This paper describes a real-time vision-based blind spot warning system that has been specially designed for
motorcycles detection in both daytime and nighttime conditions. Motorcycles are fast moving and small vehicles that
frequently remain unseen to other drivers, mainly in the blind-spot area. In fact, although in recent years the number of fatal
accidents has decreased overall, motorcycle accidents have increased by 20%. The risks are primarily linked to the inner
characteristics of this mode of travel: motorcycles are fast moving vehicles, light, unstable and fragile. These features make
the motorcycle detection problem a difficult but challenging task to be solved from the computer vision point of view. In this
paper we present a daytime and nighttime vision-based motorcycle and car detection system in the blind spot area using a
single camera installed on the side mirror. On the one hand, daytime vehicle detection is carried out using optical flow features
and Support Vector Machine-based (SVM) classification. On the other hand, nighttime vehicle detection is based on head
lights detection. The proposed system warns the driver about the presence of vehicles in the blind area, including information
about the position and the type of vehicle. Extensive experiments have been carried out in 172 minutes of sequences recorded
in real traffic scenarios in both daytime and nighttime conditions, in the context of the Valencia MotoGP Grand Prix 2009. 
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1. INTRODUCTION

Although in recent years the number of fatal accidents has
decreased in general, the number of accidents between
vehicles and motorcycles has increased by 20% (DGT,
2008). Motorcycle and moped accidents represent 32% of
traffic accidents each year, and two-wheeled vehicles cause
around 640 deaths and 33.750 injuries only in Spain. On
average, there are 45 vehicle-to-motorcycle collisions per
day in Spain, and motorbikers get injured in 98% of them.
The main causes of these accidents are traffic infractions,
the difficulty to perceive motorcycles (fast moving and
small type of vehicle), the instability of motorcycles, the
road pavement conditions, and the driving experience. 80%
of crashes happen in urban areas, 18% in secondary roads
and 2% in highway roads (INTRAS, 2005). In addition, car
drivers’ skills and attitudes to motorcycles are very
sensitive to the spatial frequency (the width of the vehicle).
Car drivers extract low spatial frequency items from a
visual scene first (including wide vehicles such as cars,
trucks, etc.). Thus, they are more likely to miss narrow
motorcycles, which are considered to be high spatial

frequency objects (Crundall et al., 2008). It is possible that
a driver looks at an approaching motorcycle, and even
perceives the motorcycle, yet still makes a manoeuvre that
leads to a collision. This can be explained due to the “size-
arrival effect”, i.e., approaching speed is related to the size
of the vehicle. The consequence of this is that the narrower
image of the motorcycle compared to the car may result in
the driver over-estimating the time of arrival (DeLucia,
1991). Accordingly, we can state that motorcycles are the
most dangerous means of transport and the motorbiker is
one of the most vulnerable road user. 

Blind spots refers to the areas of the road that cannot be
seen by the driver while looking forward or through either
the rear-view or side mirrors. The most common blind
spots areas appear towards the rear of the vehicle on both
sides. Any kind of vehicles in the adjacent lanes of the road
that fall into these blind areas are not visible by the driver
only using the mirrors of the cars. Motorcycles are maybe
the least visible type of vehicle due to their size and the
moving speed. Other areas that are usually considered as
blind spots are those that are too low to be seen in the rear,
in the front, or to the sides of a vehicle, especially in those
with a high seating position, such as large vans, trucks,
SUVs and Longer Combination Vehicles. *Corresponding author. e-mail: llorca@aut.uah.es
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Detection of vehicles in such blind spots can be aided by
systems based on passive sensors such as video cameras or
active sensors such as radar or laser sensors. Intelligent
vehicle safety systems are in general designed to improve
the road safety by using both active and passive sensors. In
the last years, some automobile manufacturers have
developed innovative research in order to solve this
problem. They use two main technologies: short-range
radar and computer vision. Mercedes-Benz, BMW, Audi
and Ford use forward and rear radar sensors to assist park
maneuvers and also to detect vehicles in the blind spot. The
position and orientation of the sensors are good for parking
assistance but they are not the best solution to detect
vehicles and motorcycles in the blind spot. Computer
vision is less extended for this purpose and only Volvo
provides this technology in its passenger cars. This system
does not distinguish the vehicles direction, therefore it warns
the driver unnecessarily. Apart from car manufacturers,
some other companies, such as Mobileye, develop computer
vision-based systems. Cameras are cheap passive sensors
that do not emit any beams or waves. They provide a rich
data source in good visibility conditions. However, in
contrast to radar systems, vision-based solutions are very
sensitive to bad weather conditions. Accordingly, they can
be considered as low cost solutions more suitable for mass
production in the automotive industry but with limited
performance.

In this paper we present an improved (Sotelo and
Barriga, 2008) real-time vision-based blind spot warning
system using a single camera in the visible spectrum that
has been specially designed for motorcycles detection in
both daytime and nighttime conditions. Motorcycles are
fast moving and small vehicles that make the detection
problem a difficult but challenging task to be solved from
the computer vision point of view. On the one hand,
daytime vehicle detection is carried out using optical flow
features and Support Vector Machine-based (SVM) classifica-
tion. On the other hand, nighttime vehicle detection is based
on head lights detection. The proposed system warns the
driver about the presence of vehicles in the blind area,
including information about the position and the type of
vehicle. 

The remainder of the paper is organized as follows:
Section 2 briefly surveys passive and active blind spot
detection systems. An overall description of the vision-
based blind spot detection system is presented in Section 3.
The results obtained over 172 minutes of sequences
recorded in real traffic scenarios are described and
discussed in Section 4. Finally, conclusions and future
work are provided in Section 5.

2. RELATED WORK

Considering vision-based vehicle detection for monitoring
the blind spot area, most approaches are based on motion
information, knowledge-based methods and optical flow

features. (Techmer, 2004) combined a lane detection stage
with a tracking procedure by minimizing distances
between the surrounding contours of each edge point
within two consecutive images. Motion information of
vehicles is obtained in (Wang and Chen, 2005) using a
spatio-temporal wavelet transform. (Zhu et al., 2006) detect
overtaking vehicles by integrating dynamic scene modeling
as well as hypothesis testing and robust information fusion.
(Tsai et al., 2005; She et al., 2004) proposed the use of color
and shape information to detect approaching vehicles in a
single-frame fashion. 

The use of optical flow features to detect overtaking
vehicles was first proposed by (Batavia et al., 1997).
Optical flow vectors indicate the objects movement
between different frames. The vectors are obtained as
follows: first, robust features are extracted in the current
frame and the previous one. Second, features extracted are
matched to compose the optical flow vectors. Optical flow
features are less affected by shadows and they perform
perfectly for straight road conditions (Sotelo and Barriga,
2008). However vehicle detection based on optical flow
usually fails in sharp curves such as roundabouts. (Wang et

al., 2005) employed homogeneous sparse optical flow,
making detection more robust to camera shocks and
vibrations. Although optical flow methods are fast and
robust for detecting approaching objects, they still have a
strong limitation with vehicles running at similar speeds. In
such cases, tracking algorithms play a key role.

Focusing in rear and forward vehicle detection
applications, a considerable amount of research work has
been carried out during the last years. As demonstrated by
(Mori and Charkari, 1993), during the day, vehicles have
an underneath shadow. The shadow is darker than the road
and a Region Of Interest (ROI) can be set around this area.
The problem of this technique is to set a threshold to
robustly detect the shadow. In order to set the correct
threshold, (Khammari et al., 2005) and (Liu et al., 2007)
consider pixels with negative vertical gradient values as
local darker regions. In contrast, (Veit et al., 2008)
computes the main road pixels. In this technique, the
influence of the illumination, the type of road and the
weather conditions make difficult to set a fixed threshold.
In rainy conditions, the road color turns darker and the
detection of the shadow is more difficult. 

Vehicles have strong vertical and horizontal edges. This
characteristic is very important to detect the vehicle
properly. The key point is also to set an optimal threshold
to separate vehicles from the background. In (Tzomakas
and Von Seelen, 1998), they detect the road and find the
first horizontal edge scanned from the bottom of the image.
In (Matthews et al., 1995), each image column is summed
up to compute vertical edges and each image row is also
summed up to compute horizontal edges. The local
maximal peaks determine the positions of candidates. 

Vehicles are symmetric in front or back view, so
symmetry features have been widely used to fit the
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bounding box of vehicles (Kuehnle, 1991; Bertozzi et al.,
2000). Symmetry can be computed in many different types
of images: contour images, images of vertical and
horizontal edges, grayscale images, etc. In (Llorca et al.,
2010a) gray level, vertical edges and horizontal edges
symmetries are used to verify the selected candidates and
to refine the final position of the vehicle. The main
disadvantage of this method is that it does not work well
when the vehicles are partially occluded or when they
appear oblique with respect to the camera. 

Inverse perspective mapping (IPM) has been widely
proposed to detect forward vehicles (Arróspide and
Salgado, 2012; Lee and Kim, 2012). Among the methods
used to reduce the region of interest from which vehicles are
detected, we remark lane detection approaches (Álvarez et

al., 2010; Choi et al., 2012), that can be also applied in
Lane Departure Warning (LDW) systems.

Finally, it is important to remark that an additional
camera can be used to obtain depth information easing the
detection process. A considerable amount of work can be
found in the literature (Sun et al., 2006; Jung et al., 2007;
Hwang and Huh, 2009; Vinagre et al., 2012; Llorca et al.,
2012). However, stereo vision-based vehicle detection
systems are not suitable for blind-spot applications mainly
due to integration problems since they need a minimum
distance between the cameras (baseline) in order to provide
accurate depth estimates (Llorca et al., 2010b).

3. SYSTEM DESCRIPTION 

In order to deal with vehicle detection in daytime and
nighttime conditions we use a single camera in the visible
spectrum installed on the side mirror (see Figure 1). The
digital camera is a FireWire color camera, with a Sony 1/
4’’ CDD sensor with progressive scan, a bright lens with
4.3 mm focal length, working at 30 frames per second with
a 640 × 480 pixel resolution. 

The global overview of the system is depicted in Figure 2.
The first stage provides information about the type of
scene. More specifically, it detects whether the vehicle is

driving in daytime or nighttime conditions, as well as if the
host vehicle is driving in roundabouts. According to the
output of this first stage we trigger two different systems:
daytime and/or nighttime vehicle detection. On the one
hand, daytime vehicle detection is carried out using optical
flow features and SVM classification. On the other hand,
nighttime vehicle detection is based on head lights
detection.

3.1. Daytime Vehicle Detection
The algorithm carried out in daytime conditions can be
summarized as follows:
(1) Extract robust features in each frame.
(2) Match features between frames.
(3) Analyze optical flow vectors to take into account only

part of the vectors.
(4) Extract clusters of vectors to extract candidates.
(5) Fit candidates bounding box using vertical and

horizontal edges.
(6) Candidates tracking.
(7) Linear SVM classification using Histogram of Orient-

ed Gradient (HOG) features.

Figure 1. Side mirror prototype camera used in the
experiments.

Figure 2. Global scheme of the detection method.

Figure 3. Optical flow results. The flow vectors appearing
on the infrastructure are created by the host vehicle’s ego-
motion and the flow vectors appearing on the motorbike
are created by the object overtaking the host vehicle.
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In (Luo and Gwon, 2009) an experimental comparison
of the following robust features extraction methods is
performed: SIFT, PCA and SURF. In our case, the robust
features method applied is SURF (Speeded-Up Robust
Features) (Bay et al., 2008) because this method takes less
computation time than SIFT or PCA and performs better
under illumination changes. Features are then matched
using nearest neighbor algorithm (Nene and Nayar, 1997)
and the resulting vectors are analyzed in order to filter out
the flow created by the ego-vehicle (flow vectors in the
opposite direction). In Figure 3, we can see the optical flow
vectors (red) created by the car ego-motion and optical
flow vectors (blue) created by a motorcycle overtaking the
host vehicle (it has higher speed than the host ego-vehicle). 

In order to reduce the impact of noise, the flow vectors
generated by overtaking vehicles have to be of a pre-
defined minimum size. The filtered vectors are then
validated and depicted as large dots (see Figure 4). A
simple analysis is then applied in the resulting image,
obtaining the biggest object as the vehicle candidate.
Furthermore, it is necessary to fit the bounding box to the
contour of the object. To achieve this goal, we compute
vertical and horizontal edges as well as a set of dynamic
thresholds based on edge statistics. Two histograms
(vertical and horizontal) are then used to fit the final
bounding box. An example of this process can be seen in
Figure 5. 

Each detected candidate is tracked by means of the
nearest neighbor algorithm for solving the data association
problem and then using a Kalman filter (Kalman, 1960) to
model the following state vector:

(1)

where u and v are the respective horizontal and vertical
image coordinates for the top left corner of each candidate
(note that we include their velocities), and w and h are the
respective width and height of the bounding box in the
image plane.

The last stage of the daytime vehicle detection is the
classification step. The selected and tracked candidates are
classified by means of linear SVM classifier (Christopher,
1998) in combination with histograms of oriented gradient
(HOG) features (Dalal and Triggs, 2005). A similar
approach for rear vehicle detection was previously
presented (Álvarez et al., 2010; Llorca et al., 2010c) using
only two classes: vehicles (cars and trucks) and non-
vehicles. Motorcycles are now included as a separate class,
so we have a multi-classification problem with three
classes: cars (including trucks), motorcycles and non-
vehicles (see Figure 6). 

The one-against-one approach is used with two
classifiers: one to classify motorcycles versus non-vehicles
and other to classify cars versus non-vehicle. The first
classifier was trained with 8.850 positive samples (cars and
trucks) and 17.701 negative samples. The second classifier
was trained with 6.143 positive samples (motorcycles) and
12.285 negative samples, using up to three cycles of
bootstrapping. The number of samples used to test the
classifier was: 320 motorcycles, 332 cars and 336 negative
samples. 

Figure 7 depicts the Receiver Operational Characteristic
(ROC) curve. As we can see, the Detection Rate (DR)
obtained is 94.9% and 98.7% for cars and motorcycles
respectively. The False Positive Rate provided by the
classifier ensemble is 1.5% and 5.2% for cars and
motorcycles respectively. The upper performance observed
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Figure 4. Blue vector clusters. The small ones are
discarded.

Figure 5. Bounding box fitting using horizontal and
vertical edges. 

Figure 6. Training samples. Upper row: cars. Middle row:
motorcycles. Lower row: negative samples.
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when classifying motorcycles can be explained by the fact
that HOG features are specially designed for human
detection (Dalal and Triggs, 2005). In addition, negative
samples usually include infrastructure elements with strong
horizontal edges (see lower row of Figure 7), that are prone
to be detected as false positives. 

3.2. Nighttime Vehicle Detection
During nighttime conditions, the detection method is based
on car and motorcycle headlights detection. This technique
is based on the method described in (Alcantarilla et al.,
2011) including some improvements to allow motorcycles
headlights detection.

Detection of car lights has some remarkable advantages
compared to other techniques. Car lights have a very
distinctive and stable appearance in video sequences. They
have a very well known geometry and show a higher
intensity value than neighborhood pixels. Two similar
approaches that complement each other have been
developed, one for cars and other for motorcycles. The
method can be summarized as follows:
(1) Lights detection algorithm:
• Set a threshold to get a binary image.
• Apply a morphological operation in the image. 
• Find contours. 
• Remove small objects.
• These objects are labeled as LIGHTS.
(2) Car detection algorithm:
• From LIGHTS group, find pairs of lights with the same

vertical position.
• Remove reflected lights on the road.
• Remove overlapped pairs of lights.
• Analyze symmetry.
• Compute 3D size and distance.
• These objects are labeled as CARS.
(3) Motorcycle detection algorithm:
• From LIGHTS group, remove CARS group and reflected

lights on the road.
• Remove reflected lights of motorcycles.
• Remove closely related lights.

• Compute 3D size and distance.
• These objects are labeled as MOTORCYCLES.

When LIGHTS are detected, the next step is classifying
the lights in three categories: car, motorcycle and artifacts.
Cars are detected looking for pairs of lights with the same
vertical position. An example of the algorithm is depicted
in Figure 8. As we can see, there are up to four pairs of
lights. The bottom one is removed because is a reflected
light on the road and the widest one is also deleted because
is overlapped with other pairs. In addition, symmetry is
analyzed and 3D size and distance are estimated to reject
too far candidates or streetlights. Distance estimation is
based on flat world assumption, camera calibration
parameters and previous knowledge of objects size. 

The nighttime motorcycle detection algorithm starts
removing all the lights labeled as CARS as well as the
reflected lights of the cars on the road from the LIGHTS
group, as shown in Figure 9. Furthermore, lights which are
very close to each other are removed and their 3D size and
distance are estimated to reject false positives. 

3.3. Roundabouts Detection
One of the main problems derived from the use of optical
flow in daytime conditions arises when the car is driving in
sharp curves such as roundabouts and 90 degree turns. In

Figure 7. ROC curve of the linear SVM classifier
performance. 

Figure 8. Pairs of lights analyzed in the nighttime car
detection algorithm.

Figure 9. Cars and their reflected lights are deleted.
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order to improve the performance, we develop a roundabout
detection method based on optical flow analysis. When the
method detects a roundabout, car and motorcycle detection
algorithms are temporally switched off. The purpose of this
method is to decrease the number of false warnings given
to the driver in such conditions (detection of cars and
motorcycles in roundabouts is left for future work). The
method computes the density of optical flow vectors in two
pre-defined regions (see Figure 10) taking into account the
number of vectors, their distribution, their module and their
direction. The density of flow vectors in the pre-defined
ROI in roundabouts is much higher than in straight roads.
However, this situation also appears when the host vehicle
is overtaking a vehicle located on the left lane. In order to
avoid false detections, a second region of interest is used
(see Figure 10), so detections are only considered if both
regions contain a minimum number of flow vectors. Figure
11 depicts the results of the proposed method in a sequence
where the host vehicle drove through two roundabouts with
three overtakings detected. Combining the density of flow
vectors of both regions of interest the detection rate of
roundabouts is around 95%.

4. EXPERIMENTAL RESULTS

The vision-based blind spot car and motorcycle detection
system was tested in a set of sequences recorded in real
traffic conditions (640 × 480 sized at 30 fps), including
daytime and nighttime conditions, as well as sequences in
tunnels and roundabouts of urban and highway roads.
Figure 12 shows the type of scene distribution of the
recorded sequences with a total duration of 172 minutes. 

Some specific motorcyclists collaborated in the
experiments by performing several overtakings to the host
vehicle. However, we obtained a considerable number of
sequences including multiple overtakings by driving in the
A-3 Madrid-Valencia highway during the weekend where
the Valencia MotoGP Grand Prix of 2010 took place. 

The sequences were manually labeled in order to obtain
the ground truth. As we can see in Table 1, a total of 1.048
overtakings are available, from which 494 correspond to
motorcycles and 554 to other vehicles (cars, vans, trucks,
etc). 

The performance is firstly analyzed regarding time-to-

detect, here defined as the time (number of frames) needed
to detect a ground-truth overtaking since the first instance

Figure 10. Regions of interest for roundabout detection.

Figure 11. Results of the two optical flow analysis functions.

Figure 12. Type of scene distribution.
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of full vehicle visibility (see Figure 13). The overlapped-

time is defined as the time elapsed when ground-truth and
the system output match (see Figure 13). 

We consider a detection hit when the overtaking detected
overlaps at least 50% with the ground truth overtaking.
Applying this requirement, the detection rate performance
obtained can be seen in Table 2. On the one hand, detection
rate for cars (88%) is higher than for motorcycles (84.44%)
in nighttime conditions. The reason for that stems from the
fact that more information is available for car detection in
nighttime conditions (cars are represented by two headlights
and motorcycles only by one headlight). On the other hand,
motorcycles are better detected than cars in daytime
conditions (98.0% and 96.78% respectively). Daytime
results can be explained due to the fact that HOG features
are specially designed for human detection. 

These are remarkable results since motorcycles are very
fast moving kind of vehicle, so the number of frames

available for detecting motorcycles is lower than for other
vehicles such as cars, vans or trucks. 

Table 3 depicts the average number of frames that
corresponds to the detected overtaking process (overlapping
time). On average, daytime overtakings have a lower
duration (1.74 sec) than nighttime overtakings (2.82 sec),
since vehicles usually run at lower speeds in low visibility
conditions. The worst case from the detection point of view
corresponds to motorcycles in daytime conditions (39.55
frames; 1.31sec). Because of this, one of the most
important requirements of the system is to have a short
delay time (time-to-detect) in order to detect fast
overtakings. We consider that this goal has been
accomplished since the average time-to-detect is only 5.23
frames (0.17 seconds) for motorcycles, as can be seen in
Table 4. It is important to remark that the system is very
fast when detecting vehicles in nighttime conditions (2.11
frames on average).

The good detection rate (96.56%) and the fast response of
the system (0.17 seconds) demonstrate a good performance
but it implies a high False Positive Rate (FPR). A false
alarm is considered if an overtaking is detected when there
is not a vehicle in the blind spot and the duration of the

Figure 13. Time-to-detect and overlapped time definitions.

Table 2. Number of overtakings detected applying the
requirement of 50% of overlapped time.

Vehicle Type Day Night Total

Motorcycle 440
(98.0%)

38 
(84.44%)

478 
(96.76%)

Car 512
(96.78%)

22 
(88%)

534 
(96.38%)

Total 952
(97.34%)

60 
(85.71%)

1012 
(96.56%)

Table 3. Average overlapping time in frames and seconds.

Vehicle type Units Day Night Mean

Motorcycle Frames
Seconds

39.55 
1.31

80.04 
2.66 43.23 1.44

Car Frames
Seconds

63.44 
2.11

93.24 
3.10 64.79 2.15

Mean Frames
Seconds

52.47 
1.74

84.75 
2.82 54.63 1.82

Table 4. Time-to-detect results in frames and seconds.

Vehicle type Units Day Night Mean

Motorcycle Frames
Seconds

5.37 
0.17

1.17 
0.03 

4.99 
0.16

Car Frames
Seconds

5.52 
0.18

3.80 
0.12

5.45 
0.18

Mean Frames
Seconds

5.43 
0.18

2.11 
0.07

5.23 
0.17

Table 5. False positive rate and its duration.

Minimum 
duration of
overtaking

to alert

Day Night

1 alert 
every 

(second)

Duration 
(second)

1 alert 
every

(seconds)

Duration 
(seconds)

> 0 frames 51 1.61 84 1.38

> 15 frames 62 1.91 90 1.45

> 20 frames 77 2.22 107 1.61

> 30 frames 97 2.58 147 1.89

Table 1. Number of labeled overtakings in the sequences
used to test the system.

Vehicle type Day Night Total

Motorcycle 449 
(42.84%)

45 
(4.29%)

494 
(47.13%)

Car 529 
(50.47%)

25 
(2.38%)

554 
(52.86%)

Total 978 
(93.32%)

70 
(6.67%) 1 048
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alarm is longer than 0 frames. Under these conditions, in
daytime, we unnecessarily warn every 51 seconds during
1.61 seconds. Motorcycles overtakings during the day are
the fastest ones with 39.55 frames duration (1.31 seconds).
In order to reduce the number of false alarms, we filter out
the alerts that remain active less than 20 frames (0.66
seconds) getting a smaller number of false alarms: one
every 77 seconds with an average duration of 2.22 seconds
(see Table 5). This filter worsens the detection rate and the
false positive rate does not improve significantly, so in
future work, a method to reduce false alert rate is needed.
Figure 14 depicts some examples of the results provided by
the proposed system.

The details corresponding to the average computation
time are shown in Table 6. The information about daytime

computation time is detailed in Figure 15. Computation
time measurements are based on a PC with Quad Core
processor at 2.83GHz and 3GB of RAM. In daytime
condition the CPU time is 3 times higher than the specified
restriction and this is a consequence of optical flow. It takes
83% of CPU time. However, this can be easily solved by
means of parallel computation.

5. CONCLUSION

In this paper, a motorcycles and cars detection system is
presented to reduce the number of accidents caused by the
blind spot of side mirrors. The system works during
daytime and nighttime. It also detects roundabouts in order
to turn the system off decreasing the number of false
alarms. The system has been tested in sequences with a
total duration of 2:51’40’’ and the number of overtaking
manoeuvres was 1048. A large amount of information is
collected about overtakings for this project or future work,
including duration, type of vehicle, etc. We obtained up to
98% of detection rate for motorcycles during the day and a
global detection rate of 96.56% was achieved. Motorcycles
overtakings are very fast. Thus, a short delay time is
required. The average system reaction time is 0.17 seconds.
The good performance in detection rate and reaction time
implies the disadvantage of high false alarm rate. In
nighttime condition the real time restriction is reached. In
daytime, the CPU time is 3 times higher than real time
restriction. The developed system also works if the vehicle
is parked, so it can warn the driver in a open-door check
mode in order to avoid crashes with motorcycles or
bicycles. 

Experimental data collected in daytime does not contain
bad weather conditions such as heavy fog, rain or snow. On
the one hand, due to the reduced visibility conditions,
drivers usually turn on the lights, so that nighttime
motorcycle detection algorithm is expected to play an
important role in such cases. On the other hand, it is
possible to use an automatic fog, rain or snow detection
system (Bronte et al., 2009) that would assess the blind
spot system about the available visibility range. In severe
weather conditions, these types of diagnosis systems

Figure 14. Results. Upper row: daytime examples. Lower row: nighttime examples.

Table 6. Computation time for daytime and nighttime.

Vehicle type Day Night

Computation time 94.06 ms 29.34 ms

Real time restriction at 30 fps 33 ms

Figure 15. Detailed information about daytime CPU time.
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usually suggest to switch off the vision-based detection
system. 

Current and future work can be summarized in the
following statements. A specific method for vehicle
detection in roundabouts is needed. The false alarm rate
could be improved by applying additional bootstrapping

cycles to the SVM classifiers. Furthermore, it could be
improved by reading car CAN bus data and computing
vehicle ego motion to compensate for the optical flow
created in turns and roundabouts. By halving image
resolution, processing time can be divided by four. Another
solution is to extract fewer features from each image in
order to reduce the computation time. The disadvantage of
this method is the loose of optical flow vectors in vehicles,
getting worse performance. Another future work is the use
of GPU and parallel computing to improve the
computational time needed to obtain the optical flow. The
proposed PC-based approach is not suitable for mass
production purposes. In order to provide a more realistic
solution to the automotive industry, new hardware
implementations of this system should be studied to design
a low-cost, low consumption and reliable platform.
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