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Abstract. This paper describes an adaptive neural control system for governing the movements of a robotic
wheelchair. It presents a new model of recurrent neural network based on a RBF architecture and combining in its
architecture local recurrence and synaptic connections with FIR filters. This model is used in two different control
architectures to command the movements of a robotic wheelchair. The training equations and the stability conditions
of the control system are obtained. Practical tests show that the results achieved using the proposed method are
better than those obtained using PID controllers or other recurrent neural networks models
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1. Introduction

In recent years there has been an outstanding in the
applications of neural networks, due to their ability
to learn from examples and approximate any non-
linear function. The most successful topologies are the
multilayer perceptron (MLP) and radial basis func-
tion (RBF) networks (Mulgrew, 1996). Both models
can approximate any continuous non-linear function,
although the MLP model suffers from the drawback
of being slow to train, due to the need to backprop-
agate the error; this handicap makes it impossible
to use in many practical applications. RBF networks
were initially developed for the interpolation of data
in multidimensional spaces. The advantages of these
networks are their simplicity and their trainability by
means of easy to implement algorithms with a high
convergence speed, as there is a linear relationship
between the parameters to be adjusted (synaptic con-
nections) and the neural network output (Chen et al.,
1993).

Both types of neural topologies can be classified into
feed-forward models and recurrent models. In the latter
there is some sort of feedback loop in their structure,
or inputs at different moments of time are considered,

so that the neural network output depends on the past
history of the network.

When implementing a recurrent neural network the
difference between the various architectures resides on
how the network feedback is carried out (Campolucci
et al., 1999): either externally or internally. Examples of
external feedback are the Tapped Delay Line networks,
the model of Narendra and Parthasarathy (NARX neu-
ral network) (Narendra and Parthasarathy, 1990) or
the Elman’s networks (Elman, 1990). As for internal
feedback, there are several possibilities, such as neu-
ral networks totally connected up to each other (glob-
ally recurrent neural networks), using a FIR/IIR filter
as synaptic connections (Figueiredo, 1998; Ciocoiu,
1996), storage units (Sastry et al., 1994), etc.

This paper presents a new model of RBF-type net-
work with FIR filters between the output of each neuron
and each input of the same neuron; it also uses an FIR
filter as synaptic connection between each neuron and
the output of the neural network. As a practical test of
its behaviour, the model described is used for imple-
menting the adaptive controller of a robotic wheelchair
navigator.

The robotic wheelchair is guided by using an inverse
control system, where the neurocontroller generates the
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control signals that ensure the output of the controlled
plant is the appropriate one. When using an inverse con-
trol system, in which the controller is a neural network,
the problem is how to propagate the control error to the
adjustable coefficients of the neurocontroller in such a
way that the latter vary in the right direction, leading to
error reduction. In short, the problem is how to obtain
the sensitivity of each plant output with respect to each
input.

One possibility involves obtaining a behaviour
model of the plant to be controlled, and then obtain-
ing from such mathematical model the necessary data
for adjusting the controller. This problem has been
solved in different ways: thus, Ku and Lee (1995)
and Zhang et al. (1995) use a neuroidentifier in par-
allel with the physical system to be controlled. This
neuroidentifier, which may be a recurrent neural net-
work or a feed-forward network with inputs at differ-
ent moments of time, serves as an error propagation
path. Zhang et al. (1995) use only the sign or direc-
tion of variation produced on an output by an input
change, as this information suffices for assessing in
which direction each of the neurocontroller coefficients
have to be adjusted; Acosta et al. (1999) calculate this
sensitivity by finding the relation between the plant’s
output at two different instants of time and the vari-
ation in the input that has produced said variation,
i.e.:

∂y(k)

∂u(k)
� y(k) − y(k − 1)

u(k) − u(k − 1)
(1)

Another possibility is that used by Maeda and
Figueiredo (1997), who obtain said sensitivity by in-
creasing each one of the neurocontroller’s adjustable
coefficients and making the corresponding obser-
vation of the variations in each of the plant out-
puts to be controlled, thereby estimating the plant
Jacobian.

This paper presents two different possibilities; the
first one is based on the possibility of obtaining
an approximation of the dynamic behaviour of the
wheelchair, from which its Jacobian can be calculated,
along the same lines as the system used by Zhang et al.
(1995) for controlling a ship; the second option in-
volves using another neural network in parallel with the
robotic wheelchair, acting as neuroidentifier, thus serv-
ing as a path for propagating the control error through
the wheelchair’s dynamic, providing that the identifi-
cation error is negligible.

1.1. Control of Robotic Wheelchairs

The development of robotic systems for aiding elderly
and/or disabled persons is motivated by two factors:
firstly, the increase in the number of people needing this
assistance and secondly the ongoing technical break-
throughs that make the robotic systems themselves
more efficient. From the mechanical point of view
the models include the following possibilities: classic
wheelchairs for disabled people (Mazo et al., 2001;
Cooper et al., 2002), systems for going up and down
stairs like INDEPEND ENCETM iBOTTM 3000 Mo-
bility System, systems with legs for overcoming cer-
tain obstacles (Wellman et al., 1995; Krovi and Kumar,
1999) or canes or walkers as mobility aids for people
who are able to walk (Yu et al., 2003), among other
possibilities.

In this paper a conventional wheelchair is used
(Fig. 1) and the aim in view is to design a wheelchair
control system that works better than the basic PID
system incorporated therein. The working conditions
of a robotic wheelchair vary greatly and these varia-
tions entail changes in its dynamic model. In order to

Figure 1. Actual image of the wheelchair.
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ilustrate the previous statement the following effects
can be mentioned:

• differences in the weight of the various users; the
dynamics of the wheelchair are quite different when
the driver is a child as compared to an adult (Brown
et al., 1990),

• movements of the user in the wheelchair, involving
a displacement of the mass centre,

• variations in the friction between wheels and the
ground and wheel skidding,

• ground gradient variations,
• existence of backslash in the MOSFET based H

bridge response (Cooper, 1995),
• functional asymmetries or differences in the various

motors and their associated mechanics,
• other effects such as variations in the battery charging

level, ageing of elements, etc.

The variation of parameter in the wheelchair applica-
tion are therefore a significant problem (Brown et al.,
1990). These systems are so complex, therefore, that is
impractical to describe the dynamics by exact mathe-
matical models (Cooper, 1995). As a result, it is diffi-
cult to solve the inverse kinematics of the system for
obtaining the desired actuator velocity.

In general the speed control system of a mobile robot
can be structured on several levels:

• low-level layer: with the role of executing the speed
commands generated by other layers of the electronic
control system driving the robot motors. Each wheel
normally has an independent electronic system, with
each motor being controlled by a PID system (Kuc
et al., 2001; Oriolo et al., 2002). In the simplest sys-
tems, even though the dynamic model is not linear,
the driving wheels motors are controlled by PID sys-
tems, with gain adjustment to obtain the required re-
sponses, response time, etc. under certain working
conditions (Cooper, 1995), reliying on the knowl-
edge that the control errors can be corrected by the
user in the wheelchair+user control loop.

• high-level layer: the control system provided by the
low-level layer is not reliable enough, so other feed-
back loops are set up to improve its performance, for
example, achieving greater precision in the system
movements, implementing an adaptive control sys-
tem for adaptation to changing working conditions
or shutting down the system’s power consumption.
These options have been obtained by implementing
classic adaptive control systems (Yu et al., 2003),

fuzzy controllers (Espinosa et al., 2001), by means
of neural networks (Boquete et al., 2002) or by dy-
namic feedback linearization (Oriolo et al., 2002),
among other possibilities.

The aim of this paper is to improve the basic PID-
based speed control of a wheelchair by using another
adaptive control loop based on recurrent neural net-
works. As a result, the overall performance features
of the wheelchair (stability, safety, tracking precision,
etc.) are improved for being used by other systems of
a higher level.

The key advantage of using neural nets in an adaptive
control system is that, in most cases, any system can
be controlled with a minimum a priori knowledge, and
there is no need to obtain the linear plant-defining pa-
rameters or the regression matrix. This avoids the need
of exhaustive studies beforehand and also makes it pos-
sible for the same architecture to be used for solving
other control problems with only minor modifications.

Earlier papers presented by the authors described
different tests of neural models for the identification
and adaptive control of the wheelchair. Boquete et al.
(1999a) used a recurrent neural model with FIR/IIR
filters as synaptic connections, while in Boquete et al.
(1999b) used an internal feedback model between the
output and input of each one of the RBF network’s neu-
rons, satisfactory results being obtained in both cases.
The control algorithms were implemented on a per-
sonal computer on the previous mentioned works. In
a later paper (Boquete et al., 2002) a specific control-
algorithm platform was implemented on a DSP (Digital
Signal Processor), while the wheelchair was identified
by means of a Kalman filter, which adapts on-line to
the wheelchair’s characteristics. The experience built
up in this earlier work had enabled the development of
the algorithms that fed to the solution presented in this
paper.

The outline of this paper is as follows: Section 2 de-
scribes the neural model used, the training equations
and the stability conditions; Section 3 provides a brief
survey of the physical characteristics of the system to
be controlled; Sections 4 and 5 describe the imple-
mentation of two control architectures using the neural
model described in Section 2, deriving the equations for
the adjustment of the neurocontroller and the stability
conditions; Section 6 shows various practical results
proving the sound performance of the systems imple-
mented. The paper ends by drawing the main conclu-
sions from this work (Section 7).
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Figure 2. Neural network model.

2. Neural Model

The neural network used is a model with an architec-
ture based on radial basis functions (RBF) using FIR
(Finite Impulse Response) filters as feedback and with
further FIR filters as synaptic connections (Fig. 2). As
can be seen, the proposed model is a hybrid of Chen
et al. (1993) (feedback with a filter in each neuron) and
Ciocoiu (1996) (using filters as synaptic connections);
the main contribution of this paper is the generalisation
of the model to systems with any number of inputs and
two outputs and the practical application thereof. With
a system of two inputs (x1(k), x2(k)) and two outputs
(yO1(k), yO2(k)), the model of the radial basis functions
is:

gi (k) = e− (x1(k)+x ′
i1(k)−Ci1)2+(x2(k)+x ′

i2(k)−Ci2)2

σ2 i = 1, . . . N (2)

The centre of each function is Ci = (Ci1, Ci2) and the
functions are evenly distributed over the input space;
� is a constant modulating the activation zone of each
neuron.

Two FIR filters are used for each neuron, connected
between its output and each one of its 2 inputs. The
output of these filters depends on the previous outputs
of each neuron and on the filter coefficients:

x ′
im =

S∑
j=1

aimj · gi (k − j) m = 1, 2 (3)

FIR filters are used as synaptic connections so that the
past outputs of each neuron are taken into account; the

filter between the neuron “i” and the output “p” is:

yip(k) =
R−1∑
j=0

wi pj (k) · gi (k − j) p = 1, 2 (4)

Finally, the outputs of the neural model are the sum of
the outputs of the filters acting as synaptic connections:

yOp(k) =
N∑

i=1

yip(k) (5)

As can be seen, the neural model has local activation
feedback in each neuron and also local synapse feed-
back implemented with FIR filters (Tsoi et al., 1994).
The error function to be minimised is described by the
following equation:

E(k) = 1

2
(yO1(k) − yd1(k))2 + 1

2
(yO2(k) − yd2(k))2

= 1

2
e2

1(k) + 1

2
e2

2(k) (6)

where yd1 and yd2 are the desired outputs.
The aim of the training phase is to vary the feedback

filter coefficients (aimj ) and the synaptic filter coeffi-
cients (wi pj ) to minimise (6). Using the gradient de-
scent technique leads to:

�wi pj (k) = −α · ∂ E(k)

∂wi pj (k)

= −α · ∂ E(k)

∂yOp(k)
· ∂yOp(k)

∂yip(k)
· ∂yip(k)

∂wi pj (k)
= −α · (yOp − ydp) · gi (k − j) (7)
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For the feedback filter coefficients:

�aimj (k) = −α · ∂ E(k)

∂aimj (k)
= −α ·

[
∂ E(k)

∂yO1(k)

· ∂yO1(k)

∂gi (k)
+ ∂ E(k)

∂yO2(k)
· ∂yO2(k)

∂gi (k)

]

· ∂gi (k)

∂aimj (k)
= −α · [(yO1(k) − yd1(k))

· wi10 + (yO2(k) − yd2(k)) · wi20]

·
[

gi (k − j) +
S∑

t=1

aimt · ∂gi (k − t)

∂aimj

]

· ∂gi (k)

∂x ′
im(k)

(8)

As can be seen in this last equation, adjustment of the
neuron’s feedback filter coefficients has to be effected
by means of a recurrent expression that takes into ac-
count the adjustments already made in working cycles
before the moment k.

Stability

In this section we find a maximum in the value of the
learning factor (α) in such a way as to ensure that the
training error E(k) decreases or at least does not in-
crease. A vector W containing all the adjustable co-
efficients of the neural network is considered. It can
be proved that in a two-output neural network us-
ing the gradient descent technique, a sufficient con-
dition for ensuring that E(k) − E(k − 1) ≤ 0 is (see
Appendix A):

0 < α <
1∣∣∣∣ ∂yOp(k)

∂W(k)

∣∣∣∣2
max

(9)

In the model of Fig. 1 all adjustable coefficients of the
neural network have to be considered as elements of
W:

W = [
w110, . . . wN2(R−1), a111, . . . aN2S

]T
(10)

The total number of elements of W is 2NR + 2NS,
corresponding respectively to the synaptic filters and
the feedback filters.

Given that all the elements of W are limited between
+1 and −1, we obtain from Eq. (4):∣∣∣∣

∣∣∣∣ ∂yOp

∂wi pj

∣∣∣∣
∣∣∣∣
max

= ||gi (k − j)||max = 1 (11)

It can be demonstrated that (Boquete et al., 1999a):∣∣∣∣
∣∣∣∣ ∂yOp

∂aimj

∣∣∣∣
∣∣∣∣
max

= Md

1 − Md · S
(12)

where

Md = max

∣∣∣∣
∣∣∣∣ ∂gi (k)

∂x ′
im(k)

∣∣∣∣
∣∣∣∣ =

√
2

σ
· e− 1

2 (13)

The following conditions define the region in which the
stability of the training process can be assured:

||aimj || < 1; ||wi pj || < 1; Md <
1

S
; (14)

Thus, to ensure convergence in the learning process,
the maximum value of the learning factor is:

α <
1

2NR + 2NS
( Md

1−S·Md

)2 (15)

In conclusion, this condition ensures that E(k) −
E(k − 1) < 0 over the entire training region, because
the Eq. (9) has been obtained in the worst case.

It should be stressed out that this equation is valid
only when using the neural network to adjust an error
function situated exactly in the network output (for ex-
ample acting as neuroidentifier of a system). As will
be seen in the following sections, if it is used as a
neurocontroller, some relevant adjustments need to be
made in order to compensate for the variations in the
wheelchair dynamics.

3. Characteristics of the Robotic Wheelchair

The wheelchair used in the practical tests is a commer-
cial model which has been equipped with a sensorial
system (ultrasound sensors, infrared sensing devices,
cameras, etc.) which facilitate its guidance. There are
also different user-operated control modes (joystick,
vocal commands, air expulsion, eye movements) and
various user interfaces. The mechanical structure of the
wheelchair consists of a platform (measuring 100 ×
80 × 58 cm, and weighing approximately 35 Kg) on
two driving wheels and two castor wheels. The mo-
tor wheels, with a radius Rd = 16 cm and separated
by a distance D = 54 cm, have independent traction
provided by two DC motors.

To control the rotation speeds of the right-hand
and left-hand wheels, an electronic system was
implemented for each wheel, based on PID control of
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Figure 3. Low level control.

the motors of said wheels (Fig. 3). This low-level con-
trol layer made possible, by means of the suitable com-
mands, to ensure that the angular speed of the righthand
and lefthand wheels (wR , wL ) was approximately the
same as that indicated on the electronic control card:

w′
R � wR

(16)
w′

L � wL

In the model of our plant a system is also included
(converter) to convert the angular speeds of the wheels,
obtained from the reading and integration of the data
from each of the encoders, into the linear speed (V (k))
and the angular speed (�(k)).

For our purposes, therefore, the plant input is the
vector U(k) = [w′

R(k), w′
L (k)]T and the output is

Y(k) = [V (k), �(k)]T .

4. Inverse Control by Calculating the Jacobian

Two neural control schemes for governing the wheel-
chair movements were implemented, both using the
neural model of Fig. 1. The first scheme (Scheme I)
takes into account the effect of the PID control of the
wheelchair motors and carries out a simple analysis
of its dynamics to obtain, approximately, the relation
between linear and angular speed of the mobile robot
and the command provided to the input of the PID
controller.

V (k) = Rd

2
· [wR(k) + wL (k)]

+ G1[V (k − 1), V (k − 2), . . . �(k − 1) . . .]

(17)

�(k) = Rd

D
· [wR(k) − wL (k)]

+ G2[V (k − 1), V (k − 2), . . . �(k − 1) . . .]

G1(·) and G2(·) represent the nonlinear response of
the wheelchair. These equations then serve as the basis

for obtaining the expression of the sensitivity of each
output to each of the system inputs:

[
J11 J12

J21 J22

]
=

[ ∂V
∂w′

R
(k) ∂V

∂w′
L
(k)

∂�
∂w′

R
(k) ∂�

∂w′
L
(k)

]
=

[
Rd
2

Rd
2

Rd
D − Rd

D

]

=
[

0,16
2

0,16
2

0,16
0,54 − 0,16

0,54

]
(18)

The interesting aspect of this expression is the sign of
each one of the terms, not the absolute value; accord-
ingly, that it would even be possible to work with values
of +1 and −1.

Figure 4 shows the classic model-oriented control
structure, which uses a neurocontroller (this generates
the control signal (U(k)) on the basis of the reference
signals (Vd (k), �d (k))), a reference model (with
output Vm(k), �m(k)), and an adjustment algorithm
for minimizing the control error E(k). The variables
involved are:

Y(k) =
[

V (k)

�(k)

]
R(k) =

[
Vd (k)

�d (k)

]
(19)

U(k) =
[
w′

R(k)

w′
L (k)

]
Ym(k) =

[
Vm(k)

�m(k)

]

Figure 4. Control Scheme I.
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Note how the excitation of the wheelchair is produced
on variables w′

R and w′
L , which are the inputs to the

PID control system. The error function to be minimized
is the difference between the real output of the plant
(Y(k)) and the output given by the reference model:

E(k) = 1

2
(V (k) − Vm(k))2 + 1

2
(�(k) − �m(k))2

(20)

The neurocontroller + wheelchair unit may be consid-
ered to be a single multi-layer neural network, in which
the coefficients of the physical system are obviously not
modified at the moment of applying the error backprop-
agation algorithm. However, this last layer must serve
to obtain the sensitivity of the response of the plant and
appropriately adjust the coefficients of the neurocon-
troller. In this way, the formulas for the adjustment of
the neurocontroller are:

�wi pj (k) = −α · ∂ E(k)

∂wi pj (k)

= −α · [e1(k) · J11 + e2(k) · J21] · ∂w′
R(k)

∂wi pj (k)

− α · [e1(k) · J12 + e2(k) · J22] · ∂w′
L (k)

∂wi pj (k)

= −α[e1(k) · J1P + e2(k) · J2P ] · ∂yO P

∂wi pj

(21)

�aimj (k) = −α · ∂ E(k)

∂aimj (k)

= −α · [e1(k) · J11 + e2(k) · J21] · ∂w′
R(k)

∂aimj (k)

− α · [e1(k) · J12 + e2(k) · J22] · ∂w′
L (k)

∂aimj (k)

= −α[e1(k) · J1P + e2(k) · J2P ] · ∂yO P

∂aimj

(22)

where

e1(k) = (V (k) − Vm(k)) e2(k) = (�(k) − �m(k))

w′
R(k) = yO1(k) w′

L (k) = yO2(k) (23)

Stability

Applying the result indicated by Eq. (9) and consider-
ing the neurocontroller+wheelchair unit to be a single

neural network, the following conditions must be ful-
filled by the control system of Fig. 4:

0 < α <
1∣∣∣∣ ∂V (k)

∂W

∣∣∣∣2
max

0 < α <
1∣∣∣∣ ∂�(k)

∂W

∣∣∣∣2
max

(24)

Equation (18) has to be taken into account to obtain the
expressions of Eq. (24):

∣∣∣∣
∣∣∣∣∂V (k)

∂wi pj

∣∣∣∣
∣∣∣∣
máx

=
∣∣∣∣
∣∣∣∣∂V (k)

∂w′
R

∂w′
R

∂wi pj
+ ∂V (k)

∂w′
L

∂w′
L

∂wi pj

∣∣∣∣
∣∣∣∣
máx

=
∣∣∣∣
∣∣∣∣∂V (k)

∂yOp

∂yOp

∂wi pj

∣∣∣∣
∣∣∣∣ = ||J1p||máx = Rd

2
(25)∣∣∣∣

∣∣∣∣∂�(k)

∂wi pj

∣∣∣∣
∣∣∣∣
máx

=
∣∣∣∣
∣∣∣∣∂�(k)

∂w′
R

∂w′
R

∂wi pj
+ ∂�(k)

∂w′
L

∂w′
L

∂wi pj

∣∣∣∣
∣∣∣∣
máx

=
∣∣∣∣
∣∣∣∣∂�(k)

∂yOp

∂yOp

∂wi pj

∣∣∣∣
∣∣∣∣
max

= ||J2p||máx = Rd

D
(26)

As the most unfavourable condition, Eq. (26) must be
chosen. Calculating the maximum sensitivity of the
outputs of the wheelchair with respect to the coeffi-
cients of the feedback filters, and taking into consider-
ation Eq. (12):

∣∣∣∣
∣∣∣∣∂V (k)

∂aimj

∣∣∣∣
∣∣∣∣
máx

=
∣∣∣∣
∣∣∣∣J11 · ∂w′

R

∂aimj
+ J12 · ∂w′

L

∂aimj

∣∣∣∣
∣∣∣∣
máx

= Rd · Md

1 − Md · S
(27)∣∣∣∣

∣∣∣∣∂�(k)

∂aimj

∣∣∣∣
∣∣∣∣
máx

=
∣∣∣∣
∣∣∣∣ Rd

D

∂w′
R

∂aimj
− Rd

D

∂w′
L

∂aimj

∣∣∣∣
∣∣∣∣
máx

= [||J21||max + ||J22||max]
Md

1 − Md S

= 2Rd

D
· Md

1 − Md · S
(28)

With the physical values of the wheelchair, the most
unfavourable case is that indicated by Eq. (28). In short,
the maximum value of the learning factor that can be
used in the control system of Fig. 4 is:

0 < α <
1

2 · N · R · ( Rd
D

)2 + 2N · S · (2 Rd
D · Md

1−Md · S

)2

(29)
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Figure 5. Control scheme using a neuroidentifier.

5. Inverse Control Using a Neuroidentifier

Figure 5 shows the second option of inverse control
(Scheme II), using in this case another neural network
(similar to that of Fig. 1) in parallel with the wheelchair,
so that the latter serves as a path for propagating the
control error to the neurocontroller. The neuroidenti-
fier serves for obtaining in each sampling time (k) the
plant’s model. This model will be useful for propa-
gating the control error from the output to the neu-
rocontroller. The advantage of this scheme is that no
assumption has to be made about the dynamics of the
wheelchair, so the same scheme can be valid for con-
trolling any 2-input, 2-output system.

In each working cycle (k) two functions have to be
minimised: the identification error E I (k) and the con-
trol error E(k) (Eq. (20)). The first is defined as:

E I (k) = 1

2

(
y I

O1(k) − V (k)
)2 + 1

2

(
y I

O2(k) − �(k)
)2

(30)

The superscript “I ” indicates neuroidentifier coeffi-
cients. The neuroidentifier is adjusted in each work-
ing cycle by means of Eqs. (7) and (8), considering
the linear speed and angular speed of the wheelchair,
respectively, to be the desired network outputs.

When the identifier error is negligible, the trans-
fer function of the neuroidentifier coincides with the
wheelchair model, and the following information can
therefore be obtained:

Jpm(k) = −2 ·
N I∑
i=1

x I
m + x ′I

im(k) − C I
im

σ I 2 · w I
i p0 · gI

i (k)

(31)

As a consequence, Eqs. (21) and (22) can be used for
the adjustment of the neurocontroller.

We also need to calculate the absolute maximum
value of Jpm , which comes out as:

||Jpm(k)||max = 2 · N I · M I
d (32)

Stability

To obtain the maximum value of the learning factor
used in the control scheme shown in Fig. 5, expression
9 is applied, given that in each learning cycle the neuro-
controller and neuroidentifier coefficients are adjusted;
for stability purposes, both networks are considered to
form a multilayer network, leading to the following
vector W:

W = [
w110, . . . wN2(R−1), a111, . . . aN2S, w

I
110,

. . . w I
N I 2(RI −1), aI

111, . . . aI
N I 2SI

]T
(33)

The number of elements of the vector W is 2NR +
2NS+2N I RI +2N I SI , corresponding to the neurocon-
troller and neuroidentifier respectively. From Eqs. (11)
and (12):

∣∣∣∣
∣∣∣∣ ∂y I

Op

∂w I
i pj

∣∣∣∣
∣∣∣∣
max

= ∣∣∣∣gI
i (k − j)

∣∣∣∣
max = 1 (34)

∣∣∣∣
∣∣∣∣ ∂y I

Op

∂aI
imj

∣∣∣∣
∣∣∣∣
max

= M I
d · 1

1 − M I
d · SI

(35)

The expressions (26) and (28) are valid for coefficients
of the neurocontroller, considering the value of the
Jacobians to be given by the expression (31).

∣∣∣∣
∣∣∣∣ ∂y I

Op

∂wi pj

∣∣∣∣
∣∣∣∣
max

= 2 · M I
d · N I (36)

∣∣∣∣
∣∣∣∣ ∂y I

Op

∂aimj

∣∣∣∣
∣∣∣∣
max

= Md

1 − Md · S
· 4 · M I

d · N I (37)

The following conditions have to be met:

Md <
1

S
; M I

d <
1

SI
; ||wi pj || < 1;∣∣∣∣w I

i pj

∣∣∣∣ < 1; ||aimj || < 1;
∣∣∣∣aI

imj

∣∣∣∣ < 1; (38)
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In short, the maximum value of the learning factor to
be used in the control scheme of Fig. 5 is:

0 < α <
1

2N I RI + 2N I · SI · ( M I
d

1−M I
d ·SI

)2 + 2NR
(
2M I

d · N I
)2 + 2N · S · ( Md

1−Md ·S · 4M I
d · N I

)2
(39)

6. Practical Tests

This section gives some practical results of the con-
trol of the robotic wheelchair for disabled people.
Both architectures were implemented in a specific
hardware system based on a DSP, small enough in
terms of size and energy consumption to be fitted on
a wheelchair (Boquete et al., 2002). The number of
sampling cycles is not limited by this hardware sys-
tem but rather by the communication bus used for
communicating the various wheelchair elements. The
rate of 12 samples per second is sufficient time for
controlling a system with the inertia of a wheelchair.
Several tests were conducted for each of the two con-
trol architectures to find out the configuration (num-
ber of neurons, number of filter coefficients, etc.) that
gave the best results, always respecting the stability
conditions.

Two examples of wheelchair behaviour are shown
for each one of the architectures: movement in a straight
line at constant speed (V = 37.7 cm/s, � = 0 rd/s); in
the second example the wheelchair describes a circular
trajectory with a radius of 1 m; this trajectory is ob-
tained with the following commands: V = 37.7 cm/s,
� = 0.38 rd/s, which are based on the physical di-
mensions of the wheelchair. In all the tests there was a
person weighing 62 kg seated therein. The equation of
the reference model is the same as that used in Narendra
and Parthasarathy (1990):

Vm(k) = β · Vm(k − 1) + Vd (k)

�m(k) = β · �m(k − 1) + �d (k) (40)

|β| = 0.7 < 1

The centres of the exponential functions were equally
distributed in the square defined by the points (−1, −1)
and (1, 1), thereby also standardising the input signals
to the neural network.

First Control Scheme. When using the inverse con-
trol by calculating the jacobian, the configuration used
is defined by the following parameters:

N = 9 σ = 2.0 R = 2 S = 2 α = 0.05

Figures 6 and 7 show the results obtained when the
robotic wheelchair describes a straight-line trajectory

and a circular trajectory, respectively. At the start
(k = 0) the neurocontroller coefficients are randomly
selected; as can be seen, the control error is minimal
after very few working cycles and the movements of
the robotic wheelchair are governed with high reliabil-
ity. It should be pointed out that the error during the
first instants of time is largely due to the fact that the
wheelchair’s caster wheels are not properly aligned for
the movement the wheelchair is to generate, and it takes
2 to 4 seconds to line up correctly.

Figure 6. Avancing in a straight forward movement (Scheme I).

Figure 7. Describing a circunference (Scheme I).
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Table 1. Wheelchair describing a circular movement
(Scheme I).

Variable Mean value Standard deviation

V V = 36.29 cm/s V = 2.13 cm/s

� � = 0.37 rd/s � = 0.034 rd/s

To facilitate the comparison of results, Table 1 shows
the behaviour of the 2 wheelchair variables after taking
the average of 5 experiments while the wheelchair is
describing a circular movement. The mean value and
standard deviation have been measured from the instant
t = 0 to t = 200 sg.

Second Control Scheme. For this test, the following
set of parameters are used:

N = 9 σ = 2.0 R = 2 S = 2 α = 0.000004

N I = 9 σ I = 2.0 RI = 2 SI = 2

The practical results are shown in Figs. 8 and 9; it
should be pointed out that the neuroidentifier was
preadjusted before being implemented in the control ar-
chitecture, so that it would approximate the wheelchair
dynamics. The results for the circular movement are as
follows (Table 2), obtained under the same conditions
as in the previous subsection.

As can be seen, the behaviour is worse that achieved
in the first control scheme, doubtless due to the
need for the identification error between the plant
and the neuroidentifier to be reduced to values that

Figure 8. Avancing in a straight forward movement (Scheme II).

Table 2. Describing a circular movement (Scheme II).

Variable Mean value Standard deviation

V V = 35.4 cm/s V = 2.9 cm/s

� � = 0.39 rd/s � = 0.049 rd/s

Figure 9. Describing a circunference (Scheme II).

allow an optimum adjustment of the neurocontroller
parameters.

Effect of the Parameters on the Response. In all the
practical examples, a smooth response without over-
shooting was achieved from initial to final values, al-
though quicker or slower responses can be obtained by
varying the parameters of the control scheme. An anal-
ysis of any of the equations that establish the stability
of the control system shows that the response speed can
be regulated by varying the value of the learning factor
(∀) or the number of neurons or coefficients defining
various neural models. Nonetheless, it should be borne
in mind that it implies the risk of making the control
system unstable.

For example, using the Scheme I, Figs. 10 and 11
show the effect on the response of different values of
α; the higher the learning factor, the more the system
oscillates, since with high increments, the function to
be minimised tends to oscillate around the minimum;
on the other hand, if a small value of i is used, the error
takes a long time to settle down at an acceptable value.

Figures 12 and 13 show the wheelchair response
when the number of neurocontroller neurons is var-
ied. The greater the number of neurons, the quicker the
system response.
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Figure 10. Response with α = 0.02.

Figure 11. Response with α = 0.05.

Figure 12. Response with N = 9.

Figure 13. Response with N = 25.

Similar curves can be obtained by varying the num-
ber of filter coefficients or modifying the value of σ . By
choosing the suitable parameter, users can thus adjust
the wheelchair response to their special characteristics.

Example of Adaptive Control. Another set of prac-
tical tests aimed to check the behaviour of the robotic
wheelchair movement control system when there was
a sudden change in its working conditions and hence
observe how the system adapts to new working con-
ditions. The test consists in giving the wheelchair the
commands to describe a circular trajectory. At first,
the wheelchair is empty and at a given moment (after
80 seconds) a person weighing 62 kg sits down in it
without stopping its movement; and after 115 seconds
gets up. Figure 14 shows an example of one of these ex-
periments using control Scheme I. As can be seen, after
the transient at the moment when the working condi-
tions vary, the control system settles down in very few
working cycles and governs the wheelchair correctly
again. In Tables 3 and 4 the main results of this exper-
iment using Schemes I and II are given.

Comparison with Other Control Possibilities. In this
section the system is compared with the behaviour of
control systems set up with other options to show its

Table 3. Adaptive neural control (Scheme I).

Variable Mean value Standard deviation

V V = 35.83 cm/s V = 3.57 cm/s

� � = 0.39 rd/s � = 0.059 rd/s
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Table 4. Adaptive neural control (Scheme II).

Variable Mean value Standard deviation

V V = 35.12 cm/s V = 3.90 cm/s

� � = 0.40 rd/s � = 0.071 rd/s

Figure 14. Example of adaptive control.

advantages. For these tests the movement commands
given to the wheelchair are intended again to follow a
circular trajectory with a person weighing 62 kg seated
therein. The results shown correspond to the average
value taken after carrying out each test 5 times.

Comparison with PID Control. Forced equality in
any of the control schemes U(k) = R(k) annuls the
neurocontroller effect; in other words the wheelchair
is then governed by the low level PID system. Under
these conditions and forcing the generation of a circular
trajectory the following results are obtained (Table 5).

These results are clearly inferior to those obtained
in any of the neural control configurations described
herein. This behaviour difference is exacerbated when
the wheelchair is subject to sudden changes in its dy-
namic model; the test defined above for observing the
control system’s behaviour when there is a sudden
change in the system mass, but this time with PID-
based control gives the results shown in Table 6.

Table 5. PID control.

Variable Mean value Standard deviation

V V = 33.6 cm/s V = 4.1 cm/s

� � = 0.37 rd/s � = 0.091 rd/s

Table 6. Adaptive control with PID.

Variable Mean value Standard deviation

V V = 33.9 cm/s V = 5.2 cm/s

� � = 0.39 rd/s � = 0.122 rd/s

This shows how the quality of the control system de-
creased when using only PID control; the conclusion
to be drawn from this is that the neural control sys-
tem adapts better than the PID control system to plant
parameter changes.

Tests with Other Neural Models. Previous papers
published by the authors dealt with different neural
models from those presented herein and also different
identifiers (Kalman filter). A summary of the results
is given below. It can clearly be seen that these results
have been improved by the system proposed herein. For
the sake of simplification the results are shown only of
the adaptive control experiment described so far.

By acting on the parameters defining the structure of
the neural network, it is possible to simulate other neu-
ral network models, either recurrent or non-recurrent.
For example, the configuration (R = 1, aimj = 0) gives
non-recurrent networks; the configuration (aimj = 0)
eliminates the feedback recurrence in each of the neu-
rons; the option R = 1 possibility gives synaptic con-
nections without memory. All these possibilities have
been tested for the control of wheelchairs in previous
papers published by the authors, obtaining results that
are inferior to those presented herein. A summary of
the results is given below:

In the first paper (Boquete et al., 1999a) the
wheelchair was controlled by the control Scheme I; the
neural architecture was based on an RBF with synaptic
connections without memory (R = 1) but with FIR fil-
ters as feedback for each neuron (S = 2). The Table 7
sums up the results (adaptive control).

In another of the possibilities analysed (Boquete
et al., 1999b) FIR filters with synaptic connections were
used but without feedback for each neuron (aimj = 0),

Table 7. Adaptive control test with synaptic connec-
tions without memory (R = 1, S = 2).

Variable Mean value Standard deviation

V V = 36.35 cm/s V = 3.92 cm/s

� � = 0.38 rd/s � = 0.068 rd/s
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Table 8. Adaptive control test with aimj = 0 (control
Scheme II).

Variable Mean value Standard deviation

V V = 35.27 cm/s V = 4.22 cm/s

� � = 0.37 rd/s � = 0.072 rd/s

Table 9. Adaptive control using a Kalman filter as
identifier.

Variable Mean value Standard deviation

V V = 36.11 cm/s V = 4.27 cm/s

� � = 0.037 rd/s � = 0.092 rd/s

implementing the control Scheme II. Again we show
the test results (Table 8).

Lastly, in Boquete et al. (2002) Scheme II was used
but without a neuroidentifier. A linear system was used
as plant’s identifier (Kalman filter), also updated in each
operation cycle of the complete system. The Table 9
shows the results, which are slightly worse than those
obtained in this paper.

The use of a Kalman filter as wheelchair identifier
makes possible to consider the wheelchair identifica-
tion process as a linear one. This is not necessary in the
solutions proposed herein.

7. Conclusions

This paper shows a practical case of control of a real
system (wheelchair for disabled people) by means of
a neural system using a new architecture of recurrent
neural network based on a RBF model. Equations for
adjusting the coefficients (FIR filters) were obtained as
well as the stability conditions for 2-output models.
Two different wheelchair control architectures were
then implemented, obtaining totally satisfactory results
in both cases, using learning parameters that ensure
system stability. The first architecture calls for fewer
calculations, at the cost of having to carry out a study
of the dynamics of the system to be controlled; the
main characteristic of the control architecture using a
neuroidentifier (Scheme II) is that it can be used for
controlling any physical system with 2 inputs and 2
outputs. Nonetheless, coefficients of the neuroidenti-
fier and neurocontroller need to be adjusted at each
sampling step.

A study was made of the behaviour of one of the
control systems when its architecture parameters were

varied, showing that it is possible to vary the response
speed of the control system by varying the training
parameters or the architecture of the neurocontroller.
Lastly, a comparison between the different control sys-
tems implemented and other control systems is made;
the conclusion is that better results are obtained with
the new possibility presented herein.

We consider the main conclusions of this article to
be the following:

1. Design of a new model of recurrent neural network
with the adjustment equations being obtained by the
gradient descent algorithm; the stability conditions
obtained in the training region ensure that all W
elements have a maximum modulus value of unity.

2. Use of the model obtained in 2 control systems; in
this case the control system’s stability conditions
have also been established in closed loop. The sys-
tem’s stability conditions have been obtained using
the robotic wheelchair’s characteristics.

3. Demonstration of its correct performance in im-
plementing the adaptive control of the movements
of a wheelchair, a system characterised by brusque
changes in working conditions. The set of tests car-
ried out show the system’s behaviour response to
changes in training conditions that might affect the
stability of the complete system. This improves the
results obtained using other control techniques.

4. Implementation of the control system on low-
complexity hardware. The wheelchair is controlled
by a classic PID system and the neural control al-
gorithms can be implemented on a DSP or a micro-
processor with average performance features.

Appendix A: Proof of Eq. (9)

In this section we find a maximum in the value of the
learning factor (∀) in such a way that it ensures that
the training error decreases at all times: E(k + 1) −
E(k) < 0. For this purpose a vector W containing
all the adjustable coefficients of the neural network is
considered.

The variation in vector W is:

�W(k) = −α[yO1(k) − yd1(k)]
∂yO1(k)

∂W(k)

−α[yO2(k) − yd2(k)]
∂yO2(k)

∂W(k)

= −αe1(k)
∂yO1(k)

∂W(k)
− αe2(k)

∂yO2(k)

∂W(k)
(41)
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The increment in function E(k) es:

�E(k) = E(k + 1) − E(k)

= 1

2

[
e2

1(k + 1) + e2
2(k + 1) − e2

1(k) − e2
2(k)

]
= �e1(k)

[
e1(k) + 1

2
�e1(k)

]

+ �e2(k)

[
e2(k) + 1

2
�e2(k)

]
(42)

The respective increments in e1(k) and e2(k) are due to
the difference in vector W:

�e1(k) �
[

∂e1(k)

∂W(k)

]T

· �W(k)

(43)

�e2(k) �
[

∂e2(k)

∂W(k)

]T

· �W(k)

From Eq. (6)

∂ep(k)

∂W(k)
= ∂yOp(k)

∂W(k)
p = 1, 2 (44)

we obtain

�e1(k) = −αe1(k)

[
∂yO1(k)

∂W(k)

]T

· ∂yO1(k)

∂W(k)

− αe2(k)

[
∂yO1(k)

∂W(k)

]T

· ∂yO2(k)

∂W(k)
(45)

and

�e2(k) = −αe2(k)

[
∂yO2(k)

∂W(k)

]T

· ∂yO2(k)

∂W(k)

− αe1(k)

[
∂yO2(k)

∂W(k)

]T

· ∂yO1(k)

∂W(k)
(46)

The increment in function E(k) is

�E(k) = −αe2
1(k)

∣∣∣∣
∣∣∣∣ ∂yO1

∂W(k)

∣∣∣∣
∣∣∣∣
2

− αe2
2(k)

∣∣∣∣
∣∣∣∣ ∂yO2

∂W(k)

∣∣∣∣
∣∣∣∣
2

− 2αe1(k)e2(k)

[
∂yO1

∂W(k)

]T
∂yO2

∂W(k)

+ 1

2

[
αe1(k)

∣∣∣∣
∣∣∣∣ ∂yO1

∂W(k)

∣∣∣∣
∣∣∣∣
2

+ αe2(k)

[
∂yO1

∂W(k)

]T
∂yO2

∂W(k)

]2

+ 1

2

[
αe2(k)

∣∣∣∣
∣∣∣∣ ∂yO2

∂W(k)

∣∣∣∣
∣∣∣∣
2

+ αe1(k)

[
∂yO1

∂W(k)

]T
∂yO2

∂W(k)

]2

(47)

The above equation can be written as follows:

�E(k) = −α

[
e1(k)

∂yO1

∂W(k)
+ e2(k)

∂yO2

∂W(k)

]2

+ 1

2

[
αe1(k)

∣∣∣∣
∣∣∣∣∂yO1

∂W

∣∣∣∣
∣∣∣∣
2

+ αe2(k)

[
∂yO1

∂W

]T
∂yO2

∂W

]2

+ 1

2

[
αe2(k)

∣∣∣∣
∣∣∣∣∂yO2

∂W

∣∣∣∣
∣∣∣∣
2

+ αe1(k)

[
∂yO1

∂W

]T
∂yO2

∂W

]2

(48)

The last expression can be made negative in the fol-
lowing way:

α

[
e1(k)

∂yO1

∂W(k)
+ e2(k)

∂yO2

∂W(k)

]2

>
1

2
α2

[[
∂yO1

∂W

]T

·
(

e1(k)
∂yO1

∂W
+ e2(k)

∂yO2

∂W

)]2

+ 1

2
α2

[[
∂yO2

∂W

]T

·
(

e1(k)
∂yO1

∂W
+ e2(k)

∂yO2

∂W

)]2

+ α

∥∥∥∥e1(k)
∂yO1

∂W
+ e2(k)

∂yO2

∂W

∥∥∥∥
2

>
1

2
α2

∥∥∥∥∂yO1

∂W

∥∥∥∥
2∥∥∥∥e1(k)

∂yO1

∂W
+ e2(k)

∂yo2

∂W

∥∥∥∥
2

cos2 φ1

+1

2
α2

∥∥∥∥∂yO2

∂W

∥∥∥∥
2∥∥∥∥e1(k)

∂yO1

∂W
+ e2(k)

∂yo2

∂W

∥∥∥∥
2

cos2φ2

(49)

a true condition provided the following inequations are
fulfilled:

2 > α

∥∥∥∥∂yO1

∂W

∥∥∥∥
2

+ α

∥∥∥∥∂yO2

∂W

∥∥∥∥
2

(50)
0 < α <

1∣∣∣∣ ∂yOp(k)
∂W(k)

∣∣∣∣2
max

where the vector W is made up of all the coefficients
adjusted in each sampling cycle.

This expression indicates a sufficient condition for
ensuring the stability of the neural network adjustment
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process with 2 outputs, adjusted by the gradient descent
method.
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