DriveSafe: an App for Alerting Inattentive Drivers and Scoring Driving Behaviors

Luis M. Bergasa, Daniel Almería, Javier Almazán, J. Javier Yebes, Roberto Arroyo Department of Electronics, University of Alcalá, Madrid, Spain

• Contact:
Luis Miguel Bergasa
Phone: (+34) 91 885 65 69 / 40
Fax: (+34) 91 885 65 91
Email: luism.bergasa@uah.es

Problem Description

- Developing technologies to detect inattentive drivers is essential to avoid vehicle accidents and to stimulate safe driving practices
- ADAS are commonly fitted only in top-end vehicles
- In the motor insurance sector consumers reject the Pay-As-You-Drive due to the required installation of intrusive "black-boxes" in vehicles and their additional cost
- DriveSafe aims to mimic some safety features found in many top-end vehicles but using a commodity iPhone, and persuade insurers this app is an interesting alternative to "black-boxes"

Overview

Drowsiness Detection

- Based on vehicle lane position and lane changes obtained by computer vision
- Resize images to 320x240
 ROIs in the gray scale images
 Switching among calibration, initialization and detection

road model-base method

- Representative line per ROI
 Clothoidal ROI model
 Lane markings detection
- **3D road and ego-vehicle model** from a modification of the <u>Dickmans</u>

- Lane tracking using Kalman filtering $x = [C_0]$
- Event detector
 - Lane drifting: evaluate the driver's tendency to exit the lane. Fraction of a given time interval (60 s) spent outside a virtual driving lane of around the center 1.2 m width
 - Lane weaving: evaluates involuntary lane changes. Based on the presence or absence of the directional indicator, the event detector module concludes whether a lane change is intentional or not

Distraction Detection and Score Driving Behaviors

- Based on the frequency of critical driving events considered as violations of certain thresholds imposed on vehicle acceleration measured by iPhone IMU
 - Acceleration: Abrupt positive peaks along the z-axis indicate aggressive increases of velocity
 - Braking: Abrupt negative peaks along the z-axis is indicative of harsh braking, and therefore indirectly of not retaining a minimum distance to the vehicle ahead
 - **Turning:** High lateral acceleration along the y-axis, points towards excessive velocity in left or right turns, and may result in the vehicle loosing traction

Event Type	Threshold sensitivity					
PRC (178)	Low	Medium	High			
Acceleration	$0.1g < a_z < 0.2g$	$0.2g < a_z < 0.4g$	$a_z > 0.4g$			
Braking	$-0.1g > a_z > -0.2g$	$-0.2g > a_z > -0.4g$	$a_z < -0.4g$			
Turning	$0.1g < a'_y < 0.2g$	$0.2g < a'_y < 0.4g$	$ a'_{y} > 0.4g$			

- Score driving behaviors
 - Raw measurements filtering by Kalman filtering
 - Hysteresis control to avoid near activations due to the same event
 - Proposal for decoupling the lateral acceleration due to the road curvature from the one caused by wrong driver movements

- Event detector
 - Drowsiness takes into account the mean and the standard deviation of Lane Drifting and Lane Weaving

 $Score_{Drow} = 1 - \left(\left(\frac{m_{LD} + \sigma_{LD}}{2} \right) + \left(\frac{m_{LW} + \sigma_{LW}}{2} \right) \right)$

• We score the indicators taking into account the number and intensity of the events detected per Km $Event_km_e = \left[(k_1 \cdot Low_e + k_2 \cdot Medium_e + k_3 \cdot High_e) / Km \right]$

 $Score_{Dist_e} = 1 - CDF_e(Event_km_e)$

Experimental results

Test-bed

- 12 participants (9 males and 3 females) of our Lab
- The **test vehicle** was a **Renault Laguna** with manual shift
- Each participant carried out the two tests (aggressive and normal), 20 min long each one, in different days and varied daytime (4 at morning, 4 at afternoon and 4 at night) and with different weather conditions: 20 mainly bright and sunny, 2 raining and 2 foggy
- Aggressive driving under controlled vehicle maneuvers: 2 x lane drifting, 6 x lane weaving, 4 x sudden acceleration, 6 x sudden brake and 2 x sudden turn
- Normal driving, which contains data collected during everyday driving routines
- TABLE II. EVENTS DETECTION PERFORMANCE. True Positives (TP), False Positives (FP), Ground-Truth (GT), Precision (PR), Recall (RC)

Event	TP	FP	GT	PR	RC
Lane Drifting (LD)	25	3	25	0.89	1.00
Lane Weaving (LW)	75	6	78	0.93	0.96
Acceleration (AC)	51	19	58	0.74	0.88
Braking (BR)	80	20	91	0.80	0.88
Turning (TN)	28	10	30	0.74	0.93
Overall	260	57	282	0.82	0.92

TABLE III.	CO.	MPARATI	VE DRIV	ING BEHA	VIOR EVA	ALUATION.	
		Normal driving			Whole subjective		
	Dete	ections	Score (Mean)		score (%)		
Event Type	DS	AXA	DS	AXA	DS	AXA	
Acceleration	12	15	8.85	6.37	62.50	37.50	
Braking	13	11	9.92	7.27	87.50	12.50	
Turning	8	28	8.10	6.18	80.00	20.00	
	Aggressive driving						
	Dete	Detections Score (Mean)					
Event Type	DS	AXA	DS	AXA			
Acceleration	58	56	4.54	5.00			
Braking	87	80	4.73	3.70			
Turning	30	58	3.60	2.20			

COMPARATIVE DRIVING PEHAVIOR EVALUATION

Conclusions and Future Works

- DriveSafe, a new driver safety app for iPhones has been presented
- First app that detects inattentive driving behaviors and scores driving style at the same time
- Quantitative evaluation based on a controlled test-bed in real scenarios has been carried out from 12 drivers
- Detection performance of some inattentive driving events reached an overall precision of 82% at 92% of recall
- Driving scores comparison **DriveSafe vs AXA Drive app** obtained a **better valuation for DriveSafe**
- Future guidelines: upload <u>Drivesafe</u> version 2.0 to the Apple store after deeper tests with more vehicles, roads and users

Acknowledgments

This work has been funded by the Spanish Ministry of Economy and Competitiveness through the project Smart Driving Applications (TEC2012-37104) and by Comunidad de Madrid through the project RoboCity2030-II under Grant CAM-S2009/DPI-1559

Thanks also to Sergio Gámez for his support in the experimental tests

