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Abstract— This paper presents the basics of Bag
of visual words method, which will be used for an
occupant monitoring system that integrates a small
onboard camera inside vehicles. It is intended to de-
tect passengers’ faces because it is the most appealing
characteristic of occupants in a vehicle. This work
proposes the implementation of visual categorization
by means of two classification methods (Naive Bayes
and Multi-class SVM) that build multi-category im-
age models using the invariant descriptors (SIFT and
SURF) extracted from the images under analysis. Bag
of visual words approach requires training in order
to cluster invariant descriptors and learn the data
distribution depending on the classification algorithm.
Once the model is created, the category of every
test image can be determined by querying a visual
dictionary like searching a word in a text dictionary.
The performance of the classifiers will be evaluated
doing several comparative tests and using standard
multi-category image databases. Experimental results
and the conclusions are presented.

I. INTRODUCTION

The monitoring and control of traffic volume is be-
coming a constant social, economic, and environmental
pressure in the industrialized countries because of current
infrastructure strain under an increasingly mobile pop-
ulation. The viability of high-occupancy vehicle (HOV)
lanes for easing traffic congestion, and hence maximising
traffic flow, has been proven in countries worldwide. To
date, all enforcement has been manually applied by a
police officer and some studies have concluded this is
typically only 65% accurate due to several variables (e.g.
environmental conditions, alertness of the officer, etc.) af-
fecting the accuracy of the collected data. An automatic
vehicle occupant counting system could replace human
counters and facilitate the gathering of statistical data for
traffic operations management, transportation planning,
and construction programming. Also, it could provide the
technical means to perform the HOV lane monitoring
task more effectively, as well as facilitate enforcement to
allow single-occupant vehicles to use the HOV lane for
a fee [1]. This concept can be applied to parking lots in
city centres too.

This paper presents an occupant monitoring system
for traffic control in HOV lanes and city centres, based in
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computer vision techniques using a cheap, VGA camera
with a wide angle lens, located inside vehicles. Further-
more, it is non-intrusive because it does not distract the
driver and either requires manual operation. A communi-
cation module will receive the captured frames which will
be wirelessly submitted to a server at the infrastructure
side in order to process them and collect data about
onboard occupants. The most appealing characteristic to
detect and count vehicle occupants is the visual appear-
ance of the face. However, due to the large variability
in face appearances under driving conditions (changes in
viewing direction, lighting...) we need a smart recognition
scheme that can scale efficiently to a large number of
cases as depicted in Fig. 1. Thus, we propose to do a
visual categorization with well-known Bag of visual words
method [2] [3].
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Fig. 1. Faces appearance under normal driving conditions.

In the remainder of the paper, we review vehicle occu-
pancy technologies and other related works in Section II.
Section III describes bag of visual words method [3] for
diferent image features (SIFT [4] and SURF [5]) and two
classifiers: Naive Bayes [6] and Multi-class SVM [7]. The
occupant monitoring system inside a vehicle is presented
in Section IV and finally in Section V we show several
perfomance results using a standard image dataset and
another one built upon the images from our occupant
monitoring system. We remark final conclusions and
future works guidelines in Section VI.

II. RELATED WORK

Most of the automatic systems for occupancy detec-
tion in the last years, are based on cameras placed on
the infrastructure [8], [9], [10]. However, recently, the
focus has shifted to in-vehicle sensing. The need for
this technology has emerged out of legislation dealing
with passenger airbag deployment and baby seats. The
study [1] considers in-vehicle detection more suitable for
enforcement in HOV lanes.

Four in-vehicle occupant detection systems are gen-
erally used today and are outlined in the synthesis



report [11]. In the last years, researchers have focused
on optical sensing systems using cameras. Some works in
this line are [12] [13]. They are intended to detect and
even classify the occupants inside a vehicle in order to
contribute adaptive restraint systems in cars.

A previous work by Yebes et. al. [14] revealed the
inconvenients of using Viola&Jones algorithm [15] to de-
tect passengers’ faces for an occupant monitoring system.
The wide angle lens radially distorts the image so that
faces appearance is affected and Viola&Jones detector
does not perform well. Additionally, occlusions, multi-
view faces and illumination changes penalize the detector
performance. On the other hand, undistortion has been
proved unuseful too. The bag of visual words approach
deals with these drawbacks and the work [14] introduces
preliminar tests based on hierarchical clustering tech-
niques [16]. The results demonstrate great improvements
in occupants detection using visual categorization.

As a matter of fact, several image recognition algo-
rithms have benefited from the great advances in in-
variant descriptors such as SIFT [4], SURF [5] and M-
SURF [17], etc. Smart dictionaries or bag of visual words
methods has become very popular thanks to its simplicity
and good performance. There are applications from loop
closure detection [18] in Simultaneous Localization and
Mapping (SLAM) to CD cover recognition [19]. We have
a great interest on this researching area and our occupant
monitoring approach based on visual categorization is in-
tended to give valuable information about the occupants
inside the vehicle.

III. VISUAL CATEGORIZATION WITH BAG OF VISUAL
WORDS METHOD

Bag of visual words approach is a supervised learning
method similar to text categorization techniques [20].
In these works, text documents are represented as bags
of words whose meaning will allow to determine the
kind of document. Visual categorization using a similar
approach implies the extraction of invariant descriptors
(keypoints) from local image regions in order to create
a set of keypoints. Then, these descriptors are quantized
into visual words through the use of a K-Means cluster-
ing [21]. This bag of visual words allows a classifier to be
trained. Hence, a model of the training data is created
to implement a complex multi-class classifier. Figure 2
depicts the required steps in the training and testing
stages of the proposed method [3].

In first place, training and testing images datasets
are split according to a pseudo-random process and a
training percentage over the total number of images in
all the categories. Next steps are summarized in the
following subsections.

A. Invariant descriptors

Visual categorization use local invariant descriptors as
semantic features of images because of the invariance
itself. These descriptors should be invariant to some
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Fig. 2. Bag of visual words categorization. Training and testing
diagrams.

variations, e.g. image affine transformations, blur and
lighting variations. But they should carry enough infor-
mation to be discriminative between images categories.
Besides, they are robust to partial visibility and occlu-
sions. Such tasks, require descriptors that are repeatable
in the sense that if there is a transformation between two
instances of an object, corresponding points are detected
and identical descriptors are obtained around each. These
properties deal with some inconvenients of Viola&Jones
face detector [14] as explained in previous section.

The extraction of local invariant descriptors from im-
ages comprises two algorithms. Firstly, a keypoint detec-
tor search for interesting features (high contrasted areas,
blobs, corners, etc) where every detected keypoint keeps
information about pixel position, scale and orientation.
Secondly, descriptor vectors are computed in an area
around each keypoint. In this work, three combinations
of keypoints detector plus descriptors are considered in
order to get a trade-off between classification and time
performances:

« Difference of Gaussians (DoG) detector and Upright
Scale Invariant Feature Transform (USIFT) descrip-
tors [4], [22].

o Fast Hessian detector and Modified Upright Speed
Up Robust Features (M-USURF) descriptors [5],
[17], [23].

o STAR detector [24] and M-USURF descriptors [17].

All the descriptors in this work are obtained con-

sidering its upright mode. Rotation invariance is not
considered because the object categories under analysis
do not present great orientation changes.

B. Vector quantization.

Once a list of keypoints (all the invariant descriptors)
have been extracted from the training images, they are
clustered with K-Means [21] in order to quantize them
into visual words (cluster centers).



The K wvalue has to be large enough to distinguish
relevant changes in image parts, but no so large to include
irrelevant variations such as noise. We perform several
tests to determine the best trade-off of accuracy and
computational performance. Besides, ten iterations of K-
Means with different initial seeds are done for chosing the
set of clusters with the lowest compactness measure (Eq.
1). Cluster centers initialization is based on Arthur and
Vassilvitskii algorithm [25].

compactness = Z | samples; — centersigpers,||? (1)
i
In the equation above, samples is a vector containing
all the training descriptors, centers is the vector of the
cluster centers determined by K-Means and labels assigns
the corresponding center identifier to every descriptor.

C. Voting scheme and histograms

The clustering process builds a dictionary or bag of
visual words representation. Next step computes the
votes of every visual word given an image. The voting
scheme is used for both training and testing stages, and
it involves the computation of an histogram of descriptors
for every image. This histogram is a vector of K bins that
measures the number of occurrences of particular image
patterns. Given the extracted descriptors from an image
and the bag of visual words, it is selected the nearest
jt" cluster center based on euclidean distance. Then, one
vote is added to the 5" element of the histogram vector.

During the training of the multi-class classifier a NxK
matrix is built, where N is the number of training images.
On the other hand, the classification step only requires
one histogram computation for each testing image.

D. Naive Bayes classifier

As a first approach, we assume independance between
visual words of different categories. Thus, Naive Bayes
classifier [6] is a simple and fast algorithm that estimates
the maximum a posteriori probability for a generative
model in which:

o A category depends on class prior probabilities,

e Every descriptor in an image is chosen indepen-
dently from a multinomial distribution over descrip-
tors specific to that class.

Given a training images set I = {I;} labeled according
to categories C = {C,}, a bag of visual words V' = {v;}
and the histogram N (i, k) of descriptors of each image; to
classify a new image into the available categories, Bayes’
rule is applied and the largest a posteriori score is taken
as the prediction:

V]
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(2)
The probability of each visual word v; given the
category Cj is computed using the following formula:
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E. Multi-class SVM classifier

As a second approach we use a kernel based method
in order to match the histogram of an image to a specific
category to solve the classification problem. Support
Vector Machine (SVM) [7] creates a point representation
in a space of n-dimensions and finds a (n-1)-dimesional
hyperplane which separates two-class data with maximal
margin. The solution is optimum in the sense that the
distance between the hyperplane and the nearest points
of each class (“support vectors®) is maximum.

In our case, the Multi-class SVM uses several binary
SVM classifiers to discriminate point sets in multiple
categories. On the other hand, we choose a linear kernel
because of the high dimension space given the K bins
(500 - 2.000) of the histograms, which are built upon bag
of visual words representation. In addition, preliminar
tests showed a good categorization performance.

During the training stage, Multi-class SVM creates the
model from the input data: the histograms vectors for
every training images and the category labels vector. For
classifying a new image, its histogram is checked against
the model in order to estimate the category among the
availables.

IV. OCCUPANT MONITORING SYSTEM

Our occupant monitoring approach proposes the use
of a wide angle lens mounted on a cheap digital camera,
with low power consumption and small size. The field
of view of the lens allows to frame all the onboard
passengers in one image. The best camera location is
attached to the roof, some centimeters in front of the
rear-view mirror, with a small inclination angle (less than
45°) to frame all the passengers [14].

The captured frames will be lately processed at the
infrastructure side as indicated in Section III in order
to detect the presence of passengers in the vehicle.
Furthermore, Bag of visual words does not consider ge-
ometric object information, but only visual appearance.
Hence, for an accurate detection of each occupant face,
every frame from the onboard camera is empirically split
in 5 regions of interest surrounding each passenger as
depicted in Fig. 3. Then, the classifier processes every
region to label it as face or background.

V. EXPERIMENTAL RESULTS

In this section we present classification rates and time
performances of the method in order to choose the best
combination of detector, descriptor and classifier. Two
measurements are used: confusion matrix (Eq. 4) and
overall error rate(Eq. 5).
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Fig. 3. (a) Sample frame from the onboard camera, (b) Five regions
of interest.
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We firstly make experiments using a standard dataset
of images. After that, similar results are exposed for our
image dataset from the occupant monitoring system.

A. Classification results using a standard image dataset

Tests in this section use a dataset of 3,150 images of
different pixel resolutions divided into 7 categories of
450 items. They are: airplanes (AI), cars (CA), faces
(FA), google things (GO), guitars (GU), houses (HO)
and motorbikes (MO) [26]. A pseudo-random set of 784
images (25% of the whole dataset, 112 per category) are
chosen for training, the rest of them for testing.

In the first experiment (Fig. 4), overall error rate and K
number of clusters are compared for different invariant
descriptors and sizes during the testing stage of Naive
Bayes classifier.

Overall error rate for testing. (64 vs 128 element M-USURF and USIFT descriptors)
40.00%

& STAR+W-USURF 64

= M-USURF 64

7 STAR+N-USURF128

& M-USURF 128

= USIFT 128

Overall error rate (%)
S

v
v
15.00% '__I*'_"""i-_.,____‘_ v
S

50 100 200 500 750 1000 1500 2000 4000
K Clusters

Fig. 4. Overall error rate vs K clusters.
Execution times for training stage considering a 2GHz
CPU core, are divided into 4 groups:

o Extraction of keypoints from all the training images

introduces a mean delay of: 150ms for STAR+M-
USURF 64- and 128-elements descriptors, 290ms

for FH+M-USURF 64- and 128-elements descriptors
and 600ms for DoG+USIFT 128-elements descrip-
tors.

o K-Means execution times are displayed in Fig. 5.

o Naive Bayes training CPU times are shown in Fig. 6.

o Keypoint extraction plus Naive Bayes classification
of a new test image. (K=2000). See Table I.
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TABLE 1
NAIVE BAYES CLASSIFICATION DELAY RANGES FOR A NEW TEST
IMAGE.
64-descriptor | 128-descriptor
DoG+USIFT — 800 - 2800ms
FH+M-USURF 500 - 800ms 600 - 1500ms
STAR+M-USURF | 300 - 700ms 500 - 1300ms

Looking at Fig. 4 - Fig. 6, the best trade-off between
classifier performance and CPU times is K = 2000
clusters. For this value, Fast Hessian plus M-USURF
128-elements descriptors lead to the lowest overall error
rate (13.78%). Hence, Table II summarizes the Naive
Bayes classification results for this configuration. The
highest missclasification rate is for the “google things”
category [26], due to its images overlaps with the remain-
ing categories of the experiment.

Considering the second classifier approach, i.e. Multi-
class SVM, the overall error rate evolution as K in-
creases is very similar to Fig. 4. However, Multi-class
SVM classifier yields better results than Naive Bayes.



TABLE II
CONFUSION MATRIX FOR NAIVE BAYES CLASSIFICATION. K = 2000,
FH+M-USURF 128.

True category

Al CA FA GO GU HO MO
90.82 0 0.88 2.95 0 6.21 0.88
0.29 97.92 0 0.29 0 0.88 0
3.25 0 90.53 | 13.01 4.43 0 0.59
1.18 0 8.28 50 7.10 1.47 1.18

0 0 0.29 13.31 | 87.28 0 0.29
3.55 0.88 0 5.32 0.29 89.94 0
0.88 1.18 0 15.08 0.88 1.48 97.04

Table III is the resultant confusion matrix for K=2000
and FH+M-USURF 128-clements descriptors. For this
test, the corresponding overall error rate is 8.81%.
Time delays during Multi-class SVM training are
slightly higher (about 30s more) than Naive Bayes.
However, the required time to classify a new test image

shows very similar values compared to Naive Bayes (see
Table I).

TABLE III
CONFUSION MATRIX FOR MULTI-CLASS SVM CLASSIFICATION. K =
2000, FH+M-USURF 128.

True category
Al CA FA GO GU HO MO
96.15 0 0.29 1.47 0.29 4.14 1.47
0 98.82 0 2.36 1.18 2.36 0.88
0 0 98.81 4.73 1.18 0 0.59
0.88 0.88 0.59 81.65 11.54 6.21 4.44
0.59 0 0.29 1.47 85.21 0 0
0.59 0.29 0 4.73 0.29 86.39 1.47
1.77 0 0 3.55 0.29 0.88 91.12

B. Classification results using the occupant monitoring
image dataset

Occupants’ face detection based on visual categoriza-
tion divides images into two classes: faces and back-
ground. We have built a dataset composed of 1,400 image
patches equally divided for each class. These patches
corresponds to the region splitting process depicted in
Fig. 3. The original frames of 640x480 pixels belong
to some recorded videos inside a vehicle, at daytime
and under a variety of environment conditions. Dataset
images have been manually selected in order to include
typical cases: illumination changes, partial illuminated
areas and shadows over the seats and passengers, several
users including people with glasses, sunglasses, caps,
changes in face direction and orientations, etc. Fig. 7
displays a random subset of patches from each category.

Tables IV and V summarizes the best classification
rates for Naive Bayes and Multi-class SVM classifiers
respectively. After several tests and considering soft real
time requirements for the occupant monitoring system,
we have chosen a trade-off scenario in which 30% of
images are for training. Extraction of descriptors is per-
formed with STAR detector and M-USURF 64-elements

Fig. 7. Occupant monitoring dataset: (a) Faces (b) Background.

descriptors and K = 2,000 clusters. The obtained overall
error rates are 19.2% and 12.5% respectively. The total
CPU times for training are about 55 and 63 seconds,
while a query to classify a new image patch is in the
range of nearly 100 ms in Naive Bayes case and 50 - 180
ms in Multi-class SVM.

TABLE IV
OCCUPANT MONITORING CONFUSION MATRIX. NATVE BAYES
CLASSIFIER

True category
Background | Faces
Estimated | Background 93.47 31.83
category Faces 6.53 68.17
TABLE V

OCCUPANT MONITORING CONFUSION MATRIX. MULTI-CLASS SVM
CLASSIFIER

True category
Background | Faces
Estimated | Background 78.77 3.67
category Faces 21.23 96.33

Naive Bayes creates an independent feature model
that do not deal with bias between different classes.
As a consequence, in Table IV the highest classification
rate corresponds to the background category due to the
presence of partial seats and other car parts in the images
of the two classes. Thus, nearly 1/3 of faces’ patches
are classified as background. On the other hand, Multi-
class SVM is focused on the distribution of votes over the
visual words, using a linear kernel to match an image to
a category. Hence, in the model face features are easier
to separate from common visual features in seat covers,
then image patches of faces are more distinguishable too.
Nevertheless, a linear boundary between classes might
not be the best approach and false face detection grows.
However, a non-linear kernel will increase the model



complexity and CPU execution times.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a visual categorization ap-
proach with bag of visual words method, which has been
applied to an occupant monitoring system for traffic
control in HOV lanes. Several comparative results using
two image datasets have been shown.

Fast Hessian detector and M-USURF descriptors of
128 elements produces the best result in terms of overall
error rate for both Naive Bayes and Multi-class SVM
classifiers. Nevertheless, it comprises higher CPU delays
than other descriptors (except USIFT which shows the
worst performances). Combination of STAR detector
plus M-USURF descriptors of 64 elements leads to the
fastest results in terms of computation and memory con-
sumption, while overall error rate presents mean values
over the rest. It is a good choice for soft real time appli-
cations like the occupant monitoring system proposed in
this paper. Besides, we chose K = 2,000 clusters because
it is a good trade-off between classification rates and
computation times.

Additionally, the set of experiments carried out in this
work indicates that Multi-class SVM yields a reduction
of 5% in the overall error rate compared to Naive Bayes,
whilst CPU times for training and testing remain similar.

As future guidelines we are interested in further opti-
mizations of the bag of visual words method in order to
reduce false positives in face detection. As a solution, we
propose the implementation of a multi-frame approach in
order to process real-time videos. Another future work
is the integration with the communication module and
systems at the infrastructure side for traffic control tasks.

Furthermore, we are also interested in advance re-
search of visual categorization methods improving the
voting scheme and classification algorithms.
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