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Abstract—Computer vision techniques applied to systems used
on road maintenance, which are related either to traffic signs or
to the road itself, are playing a major role in many countries
because of the higher investment on public works of this kind.
These systems are able to collect a wide range of information au-
tomatically and quickly, with the aim of improving road safety. In
this context, the correct visibility of traffic signs and panels is vital
for the safety of drivers. This paper describes an approach to the
VISUAL Inspection of Signs and panEls (“VISUALISE”), which
is an automatic inspection system, mounted onboard a vehicle,
which performs inspection tasks at conventional driving speeds.
VISUALISE allows for an improvement in the awareness of the
road signaling state, supporting planning and decision making
on the administration’s and infrastructure operators’ side. A
description of the main computer vision techniques and some
experimental results obtained from thousands of kilometers are
presented. Finally, the conclusions of the system are described.

Index Terms—Computer vision, dynamic inspection, retro-
reflection, traffic signs detection, traffic signs recognition.

I. INTRODUCTION

NOWADAYS, improving road safety is a key matter for
road network management. Any company, organization,

or institution responsible for the management and operation
of any road network should be able to diagnose the problems
related to the safety of drivers, set up a joint action plan,
coordinate efforts among all the involved organizations, assign
funds and resources, supervise the implementation of the action
plan, and evaluate the effectiveness of the taken measurements.
In this regard, there is a trend toward maintenance and optimiza-
tion of the existing infrastructure instead of constructing a new
infrastructure because supervising the state of conservation of
the existing roads is more worthwhile than building new roads.
Some works that show this tendency are [1]–[4].
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The most difficult decision that an engineer has to take is
how and when a road should be repaired efficiently. Such an
important decision cannot be taken without accurate informa-
tion about the road’s state. Among all the possible actions that
can be taken, the evaluation and analysis of the traffic vertical
signposting state are vital because of its interrelation with road
users.

The European objectives for improving road safety [5] high-
light the importance of having a good visibility of traffic signs
and panels to avoid car accidents. In this regard, the European
Commission states that making use of technical progress and
collecting data of the roads’ state are extremely important to
detect potential dangerous situations.

Since it is vital that traffic signs are clearly visible at daytime
and at nighttime from a suitable distance, the supervision of
the quality of traffic vertical signposting is a key matter. Since
traffic signs and panels are made of retroreflective materials that
deteriorate with time, it is necessary to make a periodic test of
vertical signposting.

To date, the inspection and measurement of the traffic ver-
tical signposting retroreflection have been made using static
pieces of equipment (retroreflectometers) that need to come into
contact with the sign to be measured, thus leading to a clear
danger, as operators have to stay beside the road, risking their
own and other drivers’ lives. In addition, it is necessary to close
the road when panels above the road are measured. Typically, a
few number of signs and panels are measured in a small stretch
of the road, and the results are extrapolated to the whole road,
but this technique is not efficient at all and can lead to wrong
decisions.

Most of these problems could be solved if the inspection
process were automated. However, to date, there are only a few
systems that are able to develop inspection and inventory tasks
automatically, and they have some limitations (see Section II).
The state of the art is so reduced because of different factors.
One of the main reasons is related to object detection in images,
which is a difficult problem itself and is even more difficult
at noncontrolled scenarios. Another reason is that traffic signs
and panels have different colors and shapes. In addition, the
necessity of using a mobile platform, typically a vehicle, adds
complexity to the problem, particularly in scenarios where there
is an unknown number of mobile objects.

VISUAL Inspection of Signs and panEls (VISUALISE) has
been developed as a solution to the traffic vertical signposting
inspection process. It is a tool to evaluate the traffic signs’
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state of conservation, according to the corresponding road
signposting regulation.

This system is the result of the joint collaboration between
the Robesafe Research Group at the University of Alcalá and a
series of recognized and prestigious companies in road safety
and inspection industries, such as Euroconsult,1 3M-Spain,2

and Safecontrol.3 VISUALISE is a patented dynamic inspec-
tion system for traffic signs (including those panels above the
road), mounted onboard a vehicle, which is able to perform
inspection tasks at conventional driving speed using com-
puter vision techniques. This leads to a series of advantages
versus the traditional means based on static measurements,
as follows.

1) The presence of people and vehicles beside the roads,
close to where the measurements are taken, is avoided.

2) The use of auxiliary bulky pieces of equipment to take
measurements (particularly on panels above the road) is
no longer necessary.

3) The efficiency of the inspection process is increased.
Therefore, it is possible to analyze a larger number of
signs in a shorter period of time.

All these pros lead to the most important one: a better aware-
ness of the road network signposting state, which supports
planning and decision making on the administration’s and in-
frastructure operators’ side and contributes to the improvement
of road safety.

A review of the state of the art on traffic signs inspection is
discussed in Section II. The VISUALISE operating principle
is presented in Section III, whereas the inspection process
overview is described in Section IV. Finally, the obtained
experimental results and the drawn conclusions are shown in
Sections IV and V, respectively.

II. STATE OF THE ART

Despite the fact that many works have been developed in
the field of traffic sign detection and recognition [6]–[13],
automatic traffic signs inspection using computer vision tech-
niques has yet to be thoroughly studied. The main reason for
the absence of works of this kind is that there is no global
standardization on vertical signposting regulations, as each
country has its own regulation. Another reason is that the
parameter used to measure the quality of the traffic signs by the
traffic regulatory agencies is the retroreflection, which cannot
directly be measured by any vision-based system. Besides that,
detection by using computer vision techniques in noncontrolled
scenarios is an extremely complicated problem that has not
been entirely solved.

Color segmentation is the most common method used for
traffic sign detection and recognition. Some authors use stan-
dard color spaces such as RGB [6], [14]. Some other re-
searchers prefer working with spaces that are more immune
to lighting changes such as Hue, Saturation, Intensity [15],
[16] or Lightness, U coordinate, V coordinate [17]. Because

1http://www.euroconsult.es
2http://www.3m.com/es
3http://www.safecontrol.com.ar/

these methods cannot guarantee perfect color segmentation,
other authors have developed more exhaustive color studies
and classification techniques. A database for the color pixel
classification was presented in [18], a fuzzy classifier in [19],
a system based on deformable models in [7], a proposal based
on support vector machines in [36], and another one based on
textures in [14]. Color is an important piece of information
to detect traffic signs, but the color variance can be very high
due to different weather conditions, occlusions, and shadows.
In conclusion, it is very difficult to obtain a global model for
color segmentation. Some sophisticated approaches have been
presented in the literature but, in most cases, with such a high
computational cost that makes them impossible to use in real-
time working conditions.

Other methods for traffic sign detection that are carrying out
edge detection and shape recognition over grey-scale images
have been developed. A robust-shaped detector like the Hough
transform is typically used because it is very robust to changing
illumination and occlusions. However, this transform is slow to
compute over large images, and it has to work with a wide range
of variation in the appearance of the traffic signs and panels
over the images. Different algorithms have been proposed to
reduce the computational time of the Hough transform; a multi-
dimensional quadtree structure for accumulating is suggested
in [26] (coarse-to-fine method), or in [27], a method based on
the fact that a single parameter space point can be determined
uniquely with a pair, triple, or generally n-tuple of points from
the original picture (many-to-one mapping method). Barnes
and Zelinsky [37] showed that by applying this method, the
system is fast enough to work in real time but only with
circular signs. Loy and Zelinsky [30] used a similar technique
for triangular, square, and octagonal signs but not working in
real time.

Most of the works in the literature apply detection and
recognition techniques in a single-frame way. Owing to the
complexity of the scenario, a sign classification based only
on a frame is not reliable enough to discard all the false
candidates. Information compiled through several frames can
be used to corroborate or discard each candidate. Over the
past few years, multiframe validation has been proposed by
several authors. In [8], the detection system is sensitive to
some particular image size, and a Kalman filter is used to track
a sign through the frames until it is sufficiently large to be
recognized as a specific standard sign. In [9], an automatic
road-sign detection and recognition system that is based on a
computational model of human visual recognition processing is
presented. The main drawback of this strategy is that detection
performance decreases with distance, then it is difficult to find
robust trackers for longer distances to 50 m.

Traffic sign detection and recognition constitute the first steps
of our inspection methodology. The main contributions of our
proposal on these subjects are two. First, the application of
Hough transform to restricted areas in the accumulation matrix,
with no precision loss, allows us to detect triangular, square,
diamond, octagonal, and circular shapes in a robust way and in
real time. Second, we propose a novel multiframe validation
method based on a backtracking strategy. Backtracking ana-
lyzes the image sequence in reverse direction with respect to the
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Fig. 1. Manual inspection devices. (a) Example of a manual inspection device.
(b) Example of a laboratory inspection device.

recording one. This technique achieves a more robust tracking
of every sign and panel up to longer distances than typical
tracking methods. In addition, the relative distance between
a sign and a vehicle is computed, combining stereo vision
information with odometry information.

Focusing on the methods for vertical signposting inspection,
the existing systems can be divided into two groups: manual
and automatic inspection devices. Inside the first group, there
are portable pieces of equipment, which are used to measure
the retroreflection coefficient of a traffic sign or panel manually,
and laboratory devices, which are used to carry out several
experiments by modifying different parameters that affect the
retroreflection measurement, such as the distance to the sign
and the observation angle. Fig. 1(a) shows an example of a
portable system. It usually consists of a reflectometer, a light
source, a light detector, an amplifier, a display to read the
measure, and a rechargeable battery. The geometry is typically
fixed to an input angle of −4◦ and an observation angle of
0.2◦. On the other hand, Fig. 1(b) shows a laboratory piece of
equipment, i.e., the reflectometer RMS 10 GSE by Optronik.
It consists of an illuminator and a reflected light receiver. The
observation angle can be fixed from 0.2◦ to 20◦ [20].

The main drawback of the manual devices is that they need
to come into contact with the element to be measured (or at
a maximum distance of a few meters), which means having
a huge number of disadvantages (as described in Section I).
Automatic inspection devices solve these problems. To date, no

Fig. 2. VISUALISE system components.

automatic piece of equipment capable of taking retroreflection
measurements has been developed, but there are some auto-
matic systems whose goal is to analyze vertical signposting.
The systems developed by AEPO [21] and GEOCISA [22]
are intended to do an inventory of the traffic signs. The first
system detects candidates to be traffic signs on the image by
filtering colors and computing edges with a Canny detector and
a Hough transform. The recognition is done by comparing each
candidate to a set of pattern images. The system developed by
GEOCISA [22] has a similar functionality as AEPO’s system.
Therefore, these systems are only used to do an inventory
of the road network vertical signposting. On the other hand,
the system SASV developed by the Technical Institute of
Roadway Services and Transportation Systems [23] analyzes
the visibility of traffic signs by evaluating the luminance data
taken during the recording process. Unlike VISUALISE, the
SASV system works with only one high-resolution camera,
and therefore, it is not able to compute 3-D measurements.
In addition, it does not take retroreflection measurements, and
retroreflection is the parameter used to decide if a traffic sign is
visible or not, because the regulation is based on this parameter
due to the fact that manual devices give their measures in
terms of retroreflection. The system described on this paper
is able to give not only retroreflection values at a certain
distance but retroreflection measurements at different distances
as well, generating a curve that helps to take more reliable
decisions than using just one single-point measurement. Then,
the robustness of our proposal is very high because a novel
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Fig. 3. Diagram of blocks of the inspection process.

approach to minimize the environmental lighting effect, using
alternative illuminated and nonilluminated frames, has been
carried out.

III. OPERATING PRINCIPLE

The VISUALISE system is based on the light retroreflection
principle. It uses an active infrared illuminator whose features
are perfectly defined and known a priori as a pattern light
source. Part of the infrared light that comes into contact with the
signs and panels is reflected. The reflected light is captured by
a stereoscopic system made up of two high-resolution cameras.
As a consequence, the luminance level of the traffic signs,
which is given in grey-level units by the two cameras, is directly
proportional to the grade of luminance measured in candels
per square meter units. The relation between luminance and
retroreflection is defined by considering the distance and the
angular orientation between the light source, the retroreflective
material, and the measurement system (observation and input
angles). This relation (luminance–retroreflection) is set through
a prior calibration process.

Fig. 2 shows the location of the infrared illuminator, the
cameras, and other hardware components onboard the vehicle.

The cameras are mounted on the windshield inside the ve-
hicle looking forward at the road, with a base line of 35 cm,
to guarantee the maximum precision when taking distance
measurements, particularly at long distances. Both the position

of the cameras and their angular aperture allow covering a
minimum area of 10 m on each side of the vehicle for distances
above 20 m. Therefore, the system is able to take measurements
for every sign and panel located on the road: even those placed
on both sides of the road. The cameras are calibrated with fixed
values of gain and shutter, and the stereo system is previously
calibrated.

The illumination system emits infrared light with a maximum
power of 60 W. Such a low power guarantees that the infrared
light does not affect the rest of the vehicles driving on the same
road. Furthermore, the illuminator has an angular aperture of
30◦, and therefore, it reaches a maximum illumination range of
170 m. The infrared illuminator is placed over the roof of the
vehicle, equidistant to each camera, to guarantee that the light
is homogeneously captured by each one.

The illumination system is controlled by an external synchro-
nism signal. This signal allows synchronizing the illuminator
with the cameras; therefore, the illumination of the scenario
is taken out at alternative frames, which means that the light
source is active while acquiring an image, and it is turned off in
the following frame. Therefore, each sequence consists of pairs
of illuminated stereoscopic images and pairs of nonilluminated
stereoscopic images. The external synchronism signal is pro-
vided by a microcontroller. This signal is used to synchronize
not only the infrared illumination system with the cameras but
the acquisition times of both cameras as well to avoid temporal
drifts between them.
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IV. INSPECTION PROCESS OVERVIEW

The inspection process can be divided into the following two
steps with different tasks, as shown in Fig. 3.

1) Online process. A vehicle worked by two people (a driver
and a supervisor) is used at this first stage of the process.
The vehicle is equipped with all the necessary devices
and software applications to carry out the acquisition
and recording of the input stereoscopic sequences cor-
responding to actively illuminated roads by the onboard
infrared illumination system.

2) Offline process. At this second stage, the previously
recorded sequences are processed by using an image
processing device based on a personal computer. As a
result, a report, which contains the retroreflection and the
contrast values of every sign and panel in the analyzed
stretch of road, is generated.

A. Online Process

The goal at this stage is to carry out the acquisition of
the stereoscopic sequences and the recording on a hard disk.
Each one of these sequences consists of images of different
road stretches illuminated by the onboard infrared illumination
system. They are stored on removable hard disks, each one with
a capacity of recording nearly 2.5 h, which is equivalent to
inspecting up to 250 km.

The vehicle drives along the right lane with the aim of
keeping the input angle of the light reflected by the signs and
panels constant and not exceeding the maximum values of the
materials used on the calibration process and guaranteeing that
the signs and panels are correctly illuminated by the infrared
illuminator.

B. Offline Process

The offline process takes the files generated in the previous
process as input data. These files consist of sequences of stereo-
scopic images, Global Positioning System (GPS) coordinates,
distance measurements provided by an odometer, and informa-
tion supplied by the operator with a touch screen during the
recording process. Then, the image processing algorithm is run
to carry out the detection of signs and panels, the classification
of each of them as a function of its luminance and shape, and
the corresponding values of retroreflection and contrast (just in
case this one is required). The main tasks of the algorithm are
depicted in Fig. 3.

1) Candidate Extraction: The aim of the first step of the
image processing algorithm is to detect the precise location of
the signs and panels on the images. To achieve this, an analysis
of the obtained shapes from an edge image is carried out. A
Hough transform for straight lines is used to detect triangular
signs, rectangular signs, and arrows, and a Hough transform
for circles is applied to detect circular signs and the stop
sign [24].

The algorithm used for edge detection is the Canny method.
This method preserves contours, which is very important for
detecting traffic signs using shape information because they are

Fig. 4. Constrained Hough transform applied to detect triangular, rectangular,
and arrow signs.

Fig. 5. Constrained Hough transform applied to detect circular signs.

usually closed contours. The obtained contours applying the
Canny method are codified using the chain code [25]. By mak-
ing use of this codification, the area and perimeter are obtained,
and it can also be determined whether a contour is closed or not.
The contours are accepted if they are closed contours or almost
closed contours. In addition, they must also fulfill an aspect
ratio constraint typical of the traffic signs and panels geometry,
according to the shapes shown in Fig. 7. The Hough transform
is only applied to accept contours after being filtered with
this kind of restriction, reducing the computational time. The
strategy is to apply the Hough transform to every contour, one
by one, unlike other authors [26], [27], [30], [37], who apply the
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Fig. 6. Stereo correlation. (a) Right image and bounding box of the detected panel. (b) Search space along the epipolar line corresponding to the upper left part
of the bounding box on the left image. (c) Final match on the left image.

transform to the whole image. Thus, adaptive thresholds can be
used depending on the size of each contour to detect the shapes
of traffic signs. On the other hand, it is also possible to estimate
the parameters that define these shapes to reduce the search
space using a constrained accumulation matrix a. Hence, every
straight-line-parameter estimation is calculated by means of

ρ =
x1 · y2 − x2 · y1√

(x1 − x2)2 + (y1 − y2)2
(1)

θ = arctan
x1 − x2

y1 − y2
. (2)

where (x1, y1) and (x2, y2) are points belonging to the con-
tour under study. These estimated parameters determine the
search area within the matrix a, i.e., the shaded area in
Fig. 4. A further explanation can be found in the authors’
reference [24].

A similar strategy is followed for circular sign detection.
Hough transform for circles is applied to detect circular signs
and the stop sign as well. The circumference parameter estima-
tion is calculated using the direction of the contour gradient
under study, as in [29] and [30]. The search range into the
accumulator matrix a is constrained; the circumference param-
eters are only searched inside shading areas, as can be seen
in Fig. 5. The main contribution of this step is the application
of the Hough transform to restricted areas in the accumulation
matrix, with no precision loss. With this strategy, we are able
to detect triangular, square, diamond, octagonal, and circular
shapes in a robust way and in real time.

2) Stereo Classification: An accurate estimation of the rel-
ative position between the vehicle and the signs or panels
has an important impact on further stages, such as tracking,
geometrical discarding, and luminance–retroreflection curve
computation. To minimize the distance estimation error, the
relative distance is computed by combining the stereo vision
sensor with the odometer.

Stereo parameters (camera focal length, baseline, and im-
age sizes) have been defined, giving priority to the distance
estimation error. The content of the detected bounding boxes
is matched along the epipolar line on the other stereo image,
as in [31], reducing the disparity search space according to
the minimum and maximum ranges. This process is illustrated

in Fig. 6(a)–(c). The correlation values are obtained, and
the values near the optimum are approximated by a second-
degree polynomial to compute the 3-D position with subpixel
accuracy [32].

The use of stereo vision involves two main drawbacks.
First, the computational costs are too high. Second, stereo
errors are proportional to distance [33]. As a consequence,
depth measurements corresponding to signs or panels at long
distances are not reliable enough. To minimize these aspects,
we propose a novel strategy based on a backtracking approach
in which the analysis of the images is carried out in reverse
order. Accordingly, the initial appearance of the sign takes
place at the minimum relative distance (once the whole sign
is visible in both cameras), i.e., with the minimum possible
stereo error. Thus, the relative distance between the vehicle
and the sign is initialized with the best stereo measurement
d0 = z0. The remainder measurements are updated by adding
up the vehicle displacement dvt, which is provided by the
odometer, i.e., dt = dt − 1 + dvt. This strategy is followed
for two main reasons. First, the computational cost is reduced
since stereo measurements are only obtained during the first
iterations. Second, although the odometry error is cumula-
tive (1 m per each 100 m), considering the detection range
(100 m for signs and 170 m for panels), this error will be always
much lower than the error provided by the stereo sensor at long
distances.

The vehicle global position is accurately obtained from the
differential GPS. However, the GPS sample frequency is 1 Hz,
which implies that the system obtains one GPS measurement
per each 20–30 m approximately. As the storage process is
carried out at 18 Hz, some kind of interpolation is needed. We
apply linear interpolation between two consecutive GPS mea-
surements using the values provided by the odometer, whose
sample frequency is ten times higher (100 Hz).

Finally, a global reference for each one of the detected signs
and panels is obtained by combining the global position of the
vehicle and the relative position between the vehicle and the
sign or panel. The global position of the signs and panels is
extremely useful from the point of view of both inspection and
inventory tasks.

3) Multiframe Validation: To improve the detection figures
in single frames, we propose a multiframe validation strategy.
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Fig. 7. Types of signs and panels. (a) Stop sign. (b) Circular sign (white background). (c) Circular sign (blue background). (d) Triangular sign. (e) Rectangular
sign. (f) Panel (white background). (g) Panel (blue background). (h) Arrow panel.

Fig. 8. Frame subtraction. (a) Illuminated frame. (b) Nonilluminated frame. (c) Subtraction frame.

The multiframe validation consists of a dynamic tracking of
every candidate, a search through region-matching techniques,
and a verification of the coherence in terms of the 3-D position.
To do this, it is necessary to match the extracted candidates
with the signs detected in the previous frames. To decide if a
candidate in the current frame represents the same sign than
a candidate in the previous frame, a score table that contains,
for each pair of candidates, the probability of representing the
same sign is made. Each value of the score table is computed by
taking into account the position of each candidate in the image.
However, it is crucial to set a restriction in the movement of the
candidates between two consecutive frames to limit the number
of possible associations. To estimate and update the position
and size of every candidate, Kalman filtering is used.

The state vector consists of six parameters, as can be seen in
(3): the position (x, y) of the sign center in the image plane and
the addition of the sign height and width r, together with the
velocity of variation for each one, i.e.,

X = (x, y, r, vx, vy, vr). (3)

When a sign cannot be associated with any candidate, region
matching is done. It consists of a displacement of a pattern
image, the one that is wanted to be found, over an image of
larger size. For each position of the pattern over the image, the
correlation between both images is computed, thus obtaining a
normalized correlation coefficient map. Then, the position that
corresponds to the higher correlation value is chosen.

Finally, it is necessary to detect the signs and panels in
the nonilluminated frame to do the subtraction of the lumi-
nance between two consecutive illuminated and nonilluminated
frames. A sign interpolation between two consecutive illu-
minated frames, which are precedent and subsequent to the
nonilluminated one, is carried out. If the displacement of the
sign or panel between two consecutive illuminated frames is
d and the sign growing factor is f , then the displacement at
the nonilluminated frame is d/2, and the growing factor is

√
f .

With this method, we obtain higher detection percentages than
using single-frame detection.

4) Sign Classification: Each detected sign and panel is later
analyzed as a function of its luminance and shape to classify
it into one of the following categories, which are depicted
in Fig. 7:

1) stop sign;
2) circular sign with white background;
3) circular sign with blue background;
4) triangular sign;
5) rectangular sign with blue background;
6) panel with white background;
7) panel with blue background;
8) arrow panel.
These eight classes represent the different shapes of the

traffic signs and panels established in the Spanish regulation
described in [38].

5) Luminance and Retroreflection Curves Computation:
For each type of sign and panel, a segmentation process is
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carried out to separate their basic elements (border, text pic-
togram, background). To minimize the effect of environmental
lighting, a subtraction of the luminance values measured by the
two cameras in two consecutive frames is carried out. There-
fore, practically, the whole luminance of the signs and panels
comes from the illumination emitted by the infrared illuminator.
This novel approach guarantees maximum homogeneity on the
measurement conditions. The mean value of the luminance in
grey scale is calculated for each part of the sign. This is done
for every single image where the sign or panel is detected, and
therefore, it is possible to obtain a luminance curve for each
basic element as a function of the measured distance.

The implemented segmentation method must be robust
enough against some typical problems in computer vision, such
as the following:

1) occlusions and shadows due to other objects;
2) noncontrolled lighting conditions;
3) image saturation;
4) signs insufficiently illuminated when placed out of the

angular aperture of the illuminator;
5) a wide range of variation in the appearance of the traffic

signs and panels in the image.

To manage these problems, a couple of techniques have been
implemented. First of all, frame subtraction has been used to
minimize the effect of noncontrolled illumination, such as road
illumination and car lights, so that the luminance measurement
only depends on the infrared illumination. Fig. 8 shows the
decrease of external lighting influence on the subtracted frame.

Second, an illumination correction method is applied to
minimize the nonuniform illumination that arises in traffic signs
and panels due to the aperture angle of the illuminator. An
estimation of the sign background by smoothing the grey levels
of the sign is carried out.

The segmentation method implemented is based on Otsu’s
algorithm [35], which is an automatic adaptive technique that
computes the optimum thresholds by maximizing the inter-
class variances. This method is applied over the subtracted
frame after applying the aforementioned illumination correc-
tion method. Then, each sign or panel is segmented in their
basic elements.

Later, to obtain the luminance curves for each traffic sign
and panel, the backtracking approach is used, which makes it
possible to get measurements of luminance of the background
elements up to 100 m for signs and up to 170 m for panels.

These curves are turned into retroreflection curves as a
function of the distance. To achieve this, different conversion
surfaces are used. These surfaces use the grey-scale luminance
and the distance as inputs, and they provide the retroreflection
value estimated as output.

According to the Spanish regulation [38], three different
curves are used, i.e., one for each retroreflective material with
which the signs and panels can be made: levels 3, 2, and 1. The
assigned curve to each sign or panel will be the one for which
a better adjustment for each hypothesis is obtained. These
conversion surfaces are computed through a prior calibration
process. Fig. 9 shows the three different conversion surfaces
and the appearance of the level-3 pattern sign used in the

Fig. 9. Conversion surfaces obtained during the calibration process.
(a) Class 1. (b) Class 2. (c) Class 3. (d) Class 3 pattern sign.

calibration process. This is a methodology patented by the
authors.

Three pattern signs with known retroreflection values as a
function of the distance, which are made of level-1, -2, and -3
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Fig. 10. Luminance curves of the white color for each pattern sign (upper) and luminance curves of each color for the level-3 pattern sign (lower).

materials, are used in the calibration process. A video sequence
is acquired for each pattern sign by using the vehicle to be
calibrated and all its onboard equipment. Fig. 10 shows the
results obtained on a real calibration experiment. On the upper
part of the figure, the grey-scale luminance curves of the white
color for each material are depicted, whereas the lower part of
the figure displays grey-scale luminance curves for each color
for the level-3 pattern sign.

In the calibration process, different pattern signs are placed at
the typical positions of traffic signs in a test road. The vehicle
drives along the right lane at a lateral distance of 5 m on the
sign. The vehicle starts driving 200 m away from the sign, and
it moves toward the sign until it disappears from the cameras’
view. The recorded sequences are then processed for obtaining
the luminance curves as a function of the distance for each one
of the three pattern signs.

The three conversion surfaces are obtained from the three
luminance curves and the retroreflection values measured man-
ually at several distances for each pattern sign. Fuzzy nonlinear
regression techniques are carried out to obtain the surfaces.
Therefore, three retroreflection curves as a function of the
distance, i.e., one for each material, are obtained from the
luminance curves. Fig. 11 shows the retroreflection curves
obtained after the calibration process for each material.

The retroreflection value of the white part of the sign, which
is measured at a distance of 100 m, corresponds to the standard
measurement for an input angle of 5◦ and an observation
angle of 0.33◦, because of the geometry given by the location
of the cameras and the infrared illuminator. Retroreflection
at the 100-m measurement is used for the current manual
inspection systems to establish if a sign fulfils the regulation
relative to the minimum retroreflection value accepted for a
traffic sign.

As it was said previously, the retroreflection measurements
of the parts that do not belong to the sign background, such
as the border or the text pictogram, can be used to calculate
the contrast ratio between the primary and secondary colors of
the sign. This contrast ratio can be seen as an indicator of the
legibility of the traffic sign.

Besides that, the retroreflection curve can be compared with
the retroreflection ground truth established on the regulation for
each material. This comparison allows determining if the sign
fulfils the regulation, which depends on the road where the sign
is located.

6) Report Generation: Finally, the system generates a report
that has the following information for each sign and panel:

1) retroreflection curve as a function of the distance;
2) retroreflection value at 100 m;
3) contrast ratio at 100 m;
4) type of road;
5) milestone;
6) GPS coordinates;
7) height above the ground;
8) lateral distance from the center of the lane where the

vehicle is moving;
9) road;

10) carriageway;
11) lane;
12) material;
13) type of sign or panel (circular, triangular, rectangular,

panel, arrow);
14) fulfillment of the regulation relative to the retroreflection

value depending on the material of the sign.

All of the information is managed by a graphical user inter-
face that allows the contents of the report generated for each
stretch of the analyzed road to be gone through.
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Fig. 11. Ideal and real retroreflection curves of each pattern sign. (a) Class 1.
(b) Class 2. (c) Class 3.

V. EXPERIMENTAL RESULTS

To check the reliability of VISUALISE, several experiments
have been carried out. Two inspection vehicles were assembled,

Fig. 12. Inspected roads.

and more than 5000 km of the Spanish road network was
inspected with these vehicles for checking the reliability of
the recording system and the performance of the processing
software in different road scenarios. These roads can be seen
in Fig. 12. The number of kilometers for each road was 500 km
for A-1, 680 km for A-2, 700 km for A-3, 500 km for A-31,
1100 km for A-4, 800 km for A-5, and 1000 km for A-6. All
the measurements were taken during the summer because it
is the time of year when the air humidity is at a minimum,
and at nighttime, from 12 A.M. to 5 A.M., because the system
has been designed to work at nighttime when there is lower
traffic density. An approximate total of 50 000 signs and panels
were measured. On the other hand, more than 500 signs and
panels from different roads were randomly chosen as ground
truth, which means that they were also measured manually,
and these values were compared with the results obtained with
VISUALISE.

Manual measurements are taken using calibrated retroreflec-
tivity equipment that use a narrow light beam emitter. This
implies that manual measurements need to be taken, in partic-
ular, selected points of the sign or panel under inspection. Nor-
mally, several manual measurements are performed (up to five)
on each color band of each sign so that the assigned retrore-
flectivity value for such band of such sign is the average value
of all manual measurements. On the other hand, VISUALISE
automatic measurements are carried out based on the luminance
value of all visible points in the sign. Considering the fact that
real traffic signs and panels may show different retroreflectivity
behaviors in different parts of their body as they may deteriorate
heterogeneously, it is reasonable to expect that some minor
discrepancies between manual measurements (based on a finite
set of points) and VISUALISE measurements (based on the
whole sign surface) might arise.

Analyzing the results, the system is able to detect up to
99% of the signs and panels present on the road. As there are
typically occlusions owing to vegetation or other vehicles, not
all of the detected signs are valid to get a reliable retroreflection
measurement. Therefore, it has been decided to get a minimum
of ten samples at different distances from a certain sign or panel
to get a reliable retroreflection curve of it. As a consequence,
only 97% of the total of signs present on the road are valid to
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TABLE I
PERFORMANCE OF THE VISUALISE SYSTEM

TABLE II
DETECTION RATIOS FOR HOUGH TRANSFORM VERSUS GROUND TRUTH

get a retroreflection curve. After comparing the measurements
obtained with the dynamic system to the manual measurements,
the main conclusion that can be pointed out is that the reliability
of the VISUALISE system is above 91% in terms of signs
and panels correctly classified into accepted (signs that fulfill
the minimum retroreflection values stated in the regulation)
or rejected (signs whose material or retroreflection values are
below the minimum required by law). Table I summarizes these
statistics.

Focusing the analysis on the detection and classification
performance, Table II shows the detection ratios of the Hough
transform for the different types of signs and panels regarding
its shape. As can be seen, six different types are defined
instead of the eight types defined in the classification task,
because circular signs with blue and white backgrounds have
been considered in the same category according to its shape.
The same consideration has been taken into account for the
panels. A differentiation between detected and valid signs is
carried out. Valid signs are those for which there are ten
correct detections at least. As a consequence, a reliable curve
of retroreflection can be calculated for it if a valid luminance
measurement is obtained for each detection. The total detected
signs ratio is 99.52%, and the total valid signs ratio is 98.10%.
These ratios are very high considering the large number of signs
and panels tested. The highest ratio is obtained for the panels,

followed by triangular, circular, stop, and rectangular signs. The
worst detection ratio is achieved for the arrow type. The more
complex the shape of the sign is and the smaller its size is, the
lower the detection ratio is. Stop and circular signs have the
same detection numbers because stop signs are detected using
the circular Hough transform, as it is also done for circular
signs. The circular Hough transform is applied to detect stop
signs because they have a circular appearance in the images
from the distance where our system begins to measure.

Tables III and IV show the comparison between the manual
measurement and the dynamic measurement of different signs
with examples of hits (see Table III) and misses (see Table IV).
At this point, it is crucial to notice that each type of material has
a minimum retroreflection value at 100 m, as required by law.
These minimum values are, according to the Spanish regulation,
49 cd/m2lx for a level-1 sign, 126 cd/m2lx for a level-2 sign,
and 212.5 cd/m2lx for a level-3 sign. This is the reason why
some signs are rejected, although the material’s class is correct.

As stated previously, not all of the detected signs are valid
to get a reliable retroreflection measurement, and a minimum
of ten samples is required. Even so, there are signs whose
measurements can be erroneous for of different reasons. Among
the possible causes are graffitis, occlusions because of vegeta-
tion or other vehicles, shadows due to other signs or panels,
and inclined signs. This leads to misclassification in terms of
the material, because a sign or panel can be classified into a
lower level if the measurements are erroneous. This mainly
affects those small signs located on the sides of the roads.
Table IV shows some examples. The first and third signs have
not been correctly tracked. The second sign does not have
enough samples to get a reliable measurement. The fourth sign
is erroneously rejected, although manual retroreflection refers
to the white part of the panel that is in the best condition,
whereas the rest of the panel is much more deteriorated. As the
VISUALISE measurement refers to the whole panel, it can be
said that the VISUALISE measurement is more reliable than the
manual measurement in this case. The fifth sign is erroneously
rejected because it has been wrongly segmented, as it has been
grouped with another sign that is ahead of it. The last sign has
been wrongly measured as it is inclined with respect to the
road. As can be seen, misclassifications are due to discrepancies
between manual and VISUALISE methods. In some cases, we
consider that the VISUALISE method is more reliable than the
manual method, despite the fact that some results were initially
classified as errors. However, the ground truth methodology is
not foolproof.

VI. CONCLUSION AND FUTURE WORK

Unlike manual devices, VISUALISE is able to get several
luminance measurements of a sign in the range from 15 to more
than 100 m. It is also capable of classifying a sign or panel
into a certain class of material by comparing the luminance
measurements with a model obtained through a prior calibration
process. In addition, unlike other automatic inspection systems,
VISUALISE calculates retroreflection values from luminance
measurements and checks if the sign fulfils the minimum values
at 100 m, as required by law.
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TABLE III
COMPARISON BETWEEN MANUAL MEASURES AND THE VISUALISE SYSTEM. HITS

The obtained results show that the retroreflection values
given by VISUALISE are really accurate, as they have a small
error compared with the ground truth taken manually. In addi-
tion, it makes an inventory of the signs and panels.

VISUALISE has been designed to have a processing capacity
of 1 : 1, which means that only 1 h of processing is necessary
for each hour of recording. As a consequence, this system is a
good solution to the inspection problem, as it is able to analyze

the majority of the signs and panels located on a road in a short
period of time.

Focusing on the traffic sign detection and recognition algo-
rithms, our main contributions are the following: the application
of the Hough transform to restricted areas in the accumulation
matrix, with no precision loss, obtaining robust shape detectors
in real time; the multiframe validation method based on a
backtracking strategy, which achieves a more robust tracking of
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TABLE IV
COMPARISON BETWEEN MANUAL MEASURES AND THE VISUALISE SYSTEM. MISSES

every sign and panel up to longer distances than typical tracking
methods; and the robust calculation of the relative distance
among signs and the vehicle using stereo vision and odometry
data fusion.

In conclusion, VISUALISE supposes an advance with regard
to road signposting evaluation. It represents a boost for the
improvement of the state of maintenance of the road’s sign-
posting. Actually, the better awareness of road’s signposting
state will allow for the planning of more efficient road mainte-
nance and, consequently, optimization of the budget allocated
for this purpose. This will definitely help to improve road
safety.

As for future work, we are planning to increase the system
ratios through the experience to be obtained from the kilometers
that are planned to be inspected in Spain (more than 30 000) and
to adapt the system to other countries’ signposting regulations.
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