
Bidirectional Loop Closure Detection on Panoramas for Visual Navigation

Roberto Arroyo1, Pablo F. Alcantarilla2, Luis M. Bergasa1, J. Javier Yebes1 and Sergio Gámez1

Abstract— Visual loop closure detection plays a key role
in navigation systems for intelligent vehicles. Nowadays,
state-of-the-art algorithms are focused on unidirectional loop
closures, but there are situations where they are not sufficient
for identifying previously visited places. Therefore, the detection
of bidirectional loop closures when a place is revisited in a
different direction provides a more robust visual navigation.

We propose a novel approach for identifying bidirectional
loop closures on panoramic image sequences. Our proposal
combines global binary descriptors and a matching strategy
based on cross-correlation of sub-panoramas, which are defined
as the different parts of a panorama. A set of experiments
considering several binary descriptors (ORB, BRISK, FREAK,
LDB) is provided, where LDB excels as the most suitable. The
proposed matching proffers a reliable bidirectional loop closure
detection, which is not efficiently solved in any other previous
research. Our method is successfully validated and compared
against FAB-MAP and BRIEF-Gist. The Ford Campus and the
Oxford New College datasets are considered for evaluation.

I. INTRODUCTION

Nowadays, autonomous vehicles rely on vision-based loop
closure detection algorithms to recognize previously visited
places. This task is essential to obtain a robust navigation
in any intelligent transportation system. In fact, loop closure
information is very effective to correct the accumulated error
in vision-based navigation systems such as the employed for
visual odometry [1] and SLAM [2].

FAB-MAP [3] has been popularized for distinguishing
loop closures by using an appearance-only SLAM system.
This method proposes a probabilistic approach for recogniz-
ing places based on a vocabulary tree. However, FAB-MAP
requires a previous training and exhibits a high computa-
tional cost, which is due to its complex methodology for
image description and matching.

In the last years, binary descriptors have become one of
the main tendencies in image description and visual place
recognition because of its low computational cost and effec-
tiveness, which can be applied in devices with low processing
and storage capacity, such as mobile phones. BRIEF [4]
was one of the first binary descriptors broadly extended for
image matching applications. Shortly after, BRIEF-Gist [5],
a global image descriptor based on BRIEF, was defined for
providing a visual loop closure detection more efficient than
the proposed by FAB-MAP.
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Fig. 1. Example of bidirectional loop closure detection using panoramas
and matching of binary descriptors based on cross-correlation.

Nevertheless, an important weakness of BRIEF-Gist was
noted by its authors in [5]: it can not detect bidirectional
loop closures in any case. This kind of loop closures are
considered when a place is traversed by a vehicle in a
different direction, while unidirectional or standard loops
appear when a place is revisited in the same direction. Other
algorithms such as FAB-MAP can only theoretically identify
bidirectional loop closures in panoramic image sequences.
This is because FAB-MAP relies on the usage of bags of vi-
sual words, which are invariant to spatial location. However,
as we will show in our experiments, the approach proposed
by FAB-MAP does not work properly for bidirectional loop
closures in practice and implies a high complexity.

We propose a new method for efficiently detecting bidi-
rectional loop closures consisting in the binary description
of sub-panoramas, which are defined as the different parts
of a panorama, and the cross-correlation between them, as
shown in the example presented in Fig. 1. Due to the recent
definition of several new binary descriptors, which represent
an evolution with respect to BRIEF, we test the most relevant
ones for refining the visual description of sub-panoramas in
our approach: ORB [6], BRISK [7], FREAK [8], LDB [9].
Furthermore, our contribution for matching panoramas is re-
markable, because cross-correlation of sub-panoramas allows
to identify bidirectional loop closures with a high precision
and a similar computational cost compared to BRIEF-Gist.

The proposal presented in this paper is validated and
contrasted with two main state-of-the-art works. Two public
datasets composed of several panoramic images with differ-
ent loop closure situations are used in our tests: the Ford
Campus [10] and the Oxford New College [11] datasets.
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II. RELATED WORK
A. Loop closure detection based on visual appearance

Apart from FAB-MAP and BRIEF-Gist, there are other
recent works which have contributed to the research line
related to loop closure detection based on visual appearance.
The research efforts are currently focused on reducing the
processing time and the memory resources. Several works
reinforce this theory, such as [12], which experiments with
low resolution images to make evident that a handful of bits
is sufficient for carrying out an effective visual navigation.

The previous ideas perfectly fit in with the characteristics
provided by binary descriptors, which allow an image de-
scription efficient in speed and memory. Moreover, matching
of binary features is extremely fast, as deduced from [13].
This speed in matching also supports the usage of bags of
binary words in a faster way compared to the classic bags of
words employed in place recognition, as proposed by [14].
Other approaches also use binary features for relocalization
in visual odometry, such as the defined in [15].

The final objective of any loop closure detection algorithm
is to provide a robust navigation over time. Recently, several
works have been proposed for life-long visual navigation
problems, such as [16]. These kind of works consider prob-
lems such as place recognition in dynamic urban environ-
ments [17], in different hours of day [18], in scenes with
changeable illumination [19] or during all the seasons [20].

Bidirectional loop closure detection is a needed step in
visual navigation systems which is not efficiently solved in
previous works. However, the importance of this topic is
crucial, because only unidirectional loop closure information
can be insufficient in long itineraries. The proposal presented
in this work solves this problem by contributing a new
method based on the cross-correlation of panoramic views.

B. Binary descriptors
Local binary descriptors have evolved since the initial

implementation of BRIEF, which uses pairwise intensity
comparisons to generate every bit of the final binary string.
Some of these recent local binary descriptors have never
been applied in loop closure detection, but they can improve
the results obtained by methods based on BRIEF, such as
BRIEF-Gist, which computes a global binary descriptor for
a query image. In this work, we use four of these binary de-
scriptors in a global framework for testing them jointly with
our matching based on cross-correlation of sub-panoramas:

• ORB (Oriented FAST and Rotated BRIEF) [6]: this
method solves the lack of rotation invariance produced
by BRIEF and improves the resistance to noise.

• BRISK (Binary Robust Invariant Scalable Key-
points) [7]: the methodology applied by this descriptor
allows to obtain invariance to scale and rotation.

• FREAK (Fast Retina Keypoint) [8]: this algorithm
computes a cascade of binary strings by comparing
image intensities over a retinal sampling pattern.

• LDB (Local Difference Binary) [9]: this descriptor
uses not only intensity information as BRIEF, but also
gradient difference tests at several image granularities.

III. PROPOSED METHOD1

A. Image description
As stated in [12], high resolution images are not needed

to accomplish an effective place recognition. For this reason
and with the aim of reducing computational cost, we resize
the sub-panoramas before applying the binary description by
considering a patch of 64x64 pixels. According to our tests,
a lower patch decreases the effectiveness of our loop closure
detection algorithm, but a higher one does not substantially
increase precision. In addition, the applied binary strings
have a length of 32 bytes, as justified in Section V-A.

After processing the patch, we calculate a global binary
descriptor by taking the center of the resized sub-panorama
as a keypoint without dominant rotation or scale. Besides,
we also test other approach, which consists in splitting the
sub-panorama up into several grids and computing the binary
descriptor by adopting the centers of the grids as keypoints.
Better results are obtained by this second approach, but
obviously there is an increase in computational cost and
memory. Fig. 2 is presented for comparing both approaches.

Fig. 2. Global and grid-based sub-panoramas description approaches.

For each sub-panorama (Pk) which composes each
panorama (P ), a binary string (pk) is obtained. Finally, the
strings computed for the total number of sub-panoramas (n)
are concatenated ( ++ ) to form the final binary descriptor (vi),
as explained in Eq. 1. v is a vector which stores the final
binary descriptors processed for each complete panorama.

vi = p1 ++p2 ++ ... ++pn (1)

B. Image matching for unidirectional loop closures
Loop closures can be identified by correlating the ele-

ments of v generated for each analyzed panoramic image
and composing a distance matrix (M ). For detecting only
unidirectional loop closures as BRIEF-Gist does, an standard
correlation based on a XOR operation (⊕) and a sum of bits
is sufficient, as shown in Eq. 2.

Mi,j =Mj,i = bitsum(vi ⊕ vj) (2)

However, the goal of this work is detecting not only uni-
directional, but also bidirectional loop closures. Hence, we
propose a new matching approach based on cross-correlation.

1Code available from http://www.robesafe.com/personal/roberto.arroyo/
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C. Image matching for bidirectional loop closures

Bidirectional loop closures provide a valuable information
which can be employed to strengthen visual navigation.
Taking this into account, we have developed an algorithm
for identifying this kind of situations on panoramas, which
give knowledge about numerous views of a place and procure
a visual perception in different directions.

Our method is based on the cross-correlation of the binary
strings obtained for each sub-panorama contained in a pair
of panoramic images to be matched (i,j). The first step
is to fill a cross-correlation matrix (C), whose elements
correspond to the distances obtained for each matching
between the different binary strings associated to each pair
of sub-panoramas (k,l), as presented in Eq. 3. After that, the
minimum value of C is calculated and stored in M as the
final distance between i and j, as exposed in Eq. 4.

Ck,l = Cl,k = bitsum(vi,k ⊕ vj,l) (3)

Mi,j =Mj,i = min(C) (4)

For each new panoramic image processed in the sequence,
Algorithm 1 is iterated to calculate the distances with respect
to the previously analyzed images. When the sequence of
panoramic images is completely processed, the different
unidirectional loop closures appear clearly emphasized in M
as right-side diagonals ( ↘ ) and the bidirectional ones as
left-side diagonals ( ↙ ).

Algorithm 1 Bidirectional loop closure detection on panoramas by
applying a matching of binary descriptors based on cross-correlation.

Input: P {Panoramic image to be processed.}
n {Number of sub-panoramas in P .}
M {Accumulated distance matrix.}
v {Accumulated vector of binary descriptors.}

Output: M {Updated distance matrix.}
v {Updated vector of binary descriptors.}

Algorithm:
i← Length (v) + 1; {Current panoramic image index.}
for k ← 1 to n do

pk ← Calculate the binary string associated to Pk;
vi ← vi ++pk; {See Eq. 1.}

end for
for j ← 1 to i do

for k ← 1 to n do
for l← k to n do
Ck,l ← Cl,k ← bitsum (vi,k ⊕ vj,l); {See Eq. 3.}

end for
end for
Mi,j ←Mj,i ← min (C); {See Eq. 4.}

end for

IV. EVALUATION

A. Datasets

The datasets selected for evaluating our visual loop closure
detection method are the Ford Campus and the Oxford New
College. These datasets are both captured using panoramic
cameras and have challenging situations for these kind of
visual navigation problems.

The Ford Campus dataset comprises 7789 panoramic
images (5,1 km) collected by an autonomous car. It contains
several loop closures, but they are only unidirectional. For
this reason, this dataset is employed only for testing the
effectiveness of the different binary descriptors applied in
this work.

The Oxford New College dataset comprises 8127
panoramic images (2.2 km) collected by a mobile robot.
It contains several unidirectional and bidirectional loop clo-
sures. In consequence, this dataset can be used for evaluating
our complete approach, including our matching based on
cross-correlation for detecting bidirectional loop closures.

B. Methodology

We propose an evaluation technique common to all the
tests presented in this paper with the aim of validating our
proposal in an objective way. This methodology is employed
to process the results obtained not only with our loop closure
detection method, but also with the main state-of-the-art
algorithms that we compare to ours, which are FAB-MAP
and BRIEF-Gist. For testing FAB-MAP, we use an open
source implementation called OpenFABMAP [21], which is
applied in a standard configuration and conveniently trained
in the datasets chosen. BRIEF-Gist is implemented using the
BRIEF descriptor provided by OpenCV [22].

Our evaluation methodology is based on precision-recall
curves obtained from M , which in our case is achieved
after the iteration of Algorithm 1 in a complete sequence of
panoramic images. First of all, M is normalized by following
Eq. 5, with the aim of comparing the results of the different
algorithms in a suitable way. After that, M is thresholded to
compare it to the ground-truth matrix (G) of each specific
dataset. In this case, true positives are considered when a
positive of the thresholded M coincides with a positive of
G in a temporal vecinity of 7 panoramic images. The final
precision-recall curve is computed by varying the threshold
value (θ) in a linear distribution between 0 and 1 and
calculating the corresponding values of precision and recall
in each iteration. In this work, 100 values of θ are processed
for each evaluation to obtain well-defined curves.

Mi,j =
Mi,j

max(M)
(5)

V. RESULTS

A. Results for only unidirectional loop closures

These first results are exclusively for situations with only
unidirectional loop closures to analyze if in this basic case
our algorithm improves the results achieved by FAB-MAP
and BRIEF-Gist. Besides, we test the main recently appeared
binary descriptors (defined in Section II-B) for determining
which is the most suitable for our image description. With
the aim of better referring to our approach, we make allusion
to this method in the different tests as ABLE (Able for
Binary-appearance Loop-closure Evaluation). Furthermore,
in this case, it is applied on panoramas, so this specific
approach is called ABLE-P.
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On the one hand, Fig. 3 depicts the precision-recall curves
obtained in the Ford Campus dataset, which has only uni-
directional loop closures. On the other hand, Fig. 4 shows
the results achieved in the Oxford New College dataset.
Although this last dataset contains unidirectional and bidi-
rectional loop closures, we consider only the unidirectional
ones in this first evaluation.

Fig. 3. Precision-recall curves for unidirectional loop closures in the Ford
Campus dataset.

Fig. 4. Precision-recall curves for only unidirectional loop closures in the
Oxford New College dataset.

The results obtained in both cases demonstrate that the
best performance is achieved by our method and the usage
of LDB, probably due to the addition of gradient information
that this descriptor incorporates with respect to ORB, BRISK
or FREAK, which are mainly based on intensity. Besides, the
invariance to rotation or scale does not affect excessively by
following our global description approach. For this reason,
the results attained by employing our method with ORB or
BRISK are similar to the obtained by BRIEF-Gist, if only
unidirectional loop closures are considered.

Table I confirms the successful results achieved by our
method with LDB, which are supported by the comparison
between the average precision of the different algorithms
tested. In this case, average precision is defined as the
percentage of total area under the precision-recall curve.
Furthermore, the average processing time for each image
description and matching is comparable to the attained by
BRIEF-Gist. All these performance parameters have been
obtained in the experiments carried out in the Oxford New
College by utilizing a computer with the following features:
an Intel Core i7 2,40 GHz processor and a 8 GB RAM.

In addition, Fig. 5 supports the decision of using binary
strings of 32 bytes. A lower length slightly decreases the
results, but a higher one does not increase precision.

TABLE I
COMPARISON OF SOME PERFORMANCE PARAMETERS BETWEEN THE

APPROACHES TESTED IN UNIDIRECTIONAL LOOP CLOSURE DETECTION.

Average
precision

Time per
description

Time per
matching

FAB-MAP 70.90 % 167.49 ms 1.31·10−2 ms

BRIEF-Gist 87.58 % 0.04 ms 2.35·10−5 ms

ABLE-P

ORB 89.33 % 0.17 ms 2.33·10−5 ms
BRISK 84.38 % 0.18 ms 2.61·10−5 ms
FREAK 72.36 % 0.38 ms 2.66·10−5 ms

LDB 95.74 % 0.11 ms 2.29·10−5 ms

Fig. 5. Precision-recall curves for only unidirectional loop closures in the
Oxford New College dataset using LDB binary strings of different lengths.

B. Results for unidirectional and bidirectional loop closures

The difference of results between our method with LDB
and the state-of-the-art algorithms is completely corroborated
if bidirectional loop closures are also considered. In this
case, the precision-recall curves presented in Fig. 6 (a) reveal
a higher contrast between our approach and FAB-MAP or
BRIEF-Gist than the initially obtained in the Oxford New
College if only unidirectional loop closures are taken into
account (see also Fig 4 to perceive these differences).
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(a) Precision-recall curves. (b) Ground-truth (G).

(c) M using BRIEF-Gist (Global). (d) M using ABLE-P with LDB (Global).

(e) M using BRIEF-Gist (Grid 5x5). (f) M using ABLE-P with LDB (Grid 5x5).

Fig. 6. Precision-recall curves for unidirectional and bidirectional loop closures in the Oxford New College dataset. Ground-truth and distance matrices
between images 120 and 1910 are also presented, where several unidirectional and bidirectional loop closures appear represented in red (distance ≈ 0).
Distance matrices demonstrate that our method can detect bidirectional loop closures while BRIEF-Gist can not detect them. FAB-MAP generates a
confusion matrix instead of a distance matrix, which is not presented because of the worse results obtained for it in our evaluation, that are due to the low
recall values achieved when θ ≈ 1.

1382



These satisfactory results achieved by our method are due
to the applied matching based in cross-correlation, which al-
lows to correctly detect bidirectional loop closures. This can
be observed if M obtained by BRIEF-Gist (Fig 6 (c)) and our
method with LDB (Fig 6 (d)) are compared to G (Fig 6 (b)).
Bidirectional loop closures approximately appeared between
images 1590 and 1910 can not be identified by BRIEF-Gist,
but our method clearly defines them in M . We show only a
part of M for a representative subset between images 120 and
1910 because of the limitations of paper format, but results
are similar for the complete Oxford New College, as deduced
from the precision-recall curves presented in Fig. 6 (a).

Finally, we also depict the results attained by employing
a grid of 5x5 cells in image description with our method
and LDB. As can be observed in the precision-recall curves
provided in Fig. 6 (a), our method experiences a slight im-
provement if this grid is applied instead of the global image
description initially tested. This is also perceived if Fig. 6 (d)
and Fig. 6 (f) are compared, due to the finer definition of loop
closures which can be noted if a grid is used. According to
our tests, a grid based on 5x5 cells is sufficient to improve
results, because a higher grid does not practically improve
precision any more and the computational cost is increased.

VI. CONCLUSIONS AND FUTURE WORKS

Along this paper, we have proved how our approach based
on binary descriptors and cross-correlation of panoramas
improves the results achieved in visual loop closure detection
by other state-of-the-art methods such as FAB-MAP or
BRIEF-Gist, specially for bidirectional loop closures. We
refer to our specific approach as ABLE-P.

Binary descriptors are an excellent tool for describing
places in visual loop closure detection algorithms because of
its great precision and low computational cost. In this work,
several binary descriptors are tested and LDB is chosen as
the best option. In the near future, other description methods
could be contemplated to improve the obtained results, such
as the usage of 3D information in an efficient way with the
aim of reaching a more complete environment perception.

The efficient detection of bidirectional loop closures in
panoramas is a novel contribution due to the implementation
of a matching strategy based on the cross-correlation of
sub-panoramas. This is a successful, fast and easy solution
to the described problem that can be applied to improve
the performance of intelligent vehicles in visual navigation.
In future works, similar approaches could be suggested for
testing in recent datasets which are more complete and
longer than the employed in this work, such as the KITTI
Odometry [23] or the proposed in [20], which is focused in a
life-long navigation during the seasons. The reason why our
method is not evaluated in these datasets is because they use
monocular or stereo cameras and, unfortunately, the approach
proposed in this paper works only on panoramas. According
to this, a question which should be solved in a near future
is the next: It would be possible detecting bidirectional loop
closures with the information provided by only monocular
or stereo images? We expect to answer it soon.
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