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Abstract— In this paper we propose a novel method for large-
scale dense 3D reconstruction from stereo imagery. Assuming
that stereo camera calibration and camera motion are known,
our method is able to reconstruct accurately dense 3D models
of urban environments in the form of point clouds in near real-
time. We take advantage of recent stereo matching techniques
that are able to build dense and accurate disparity maps
from two rectified images. Then, we fuse the information
from multiple disparity maps into a global model by using
an efficient data association technique that takes into account
stereo uncertainty and performs geometric and photometric
consistency validation in a multi-view setup. Finally, we use
efficient voxel grid filtering techniques to deal with storage
requirements in large-scale environments. In addition, our
method automatically discards possible moving obstacles in the
scene. We show experimental results on real video large-scale
sequences and compare our approach with respect to other
state-of-the-art methods such aPMVS and StereoScan.

I. INTRODUCTION

Structure from Motion (SfM) and visual Simultaneous
Localization and Mapping (VSLAM) aIgorithmE| [E13] aim
to recover a sparse 3D reconstruction and the estimated
camera poses in large-scale environments. These methods
track features between different frames and optimize 3D (b)
structure and camera poses in a nonlinear optimizationtwhic
incorporates the geometric multi-view constraints betweef19- 1. Details (a) and aerial view (b) of dense 3D reconsioacresuits
3D structure, camera poses and image measurements. 11:%32 sequence of 2.2 Km and 2760 frames. The number of recotexru

oints is 5,770,704.

nonlinear optimization problem is normally solved by using
bundle adjustment variants [11].

Sparse 3D models do not provide enough detail to fully
appreciate the underlying structure of the environment. Tean handle: a single object, large-scale scenarios, cbwde
this end, there have been various efforts towards automate@vironments, etc. The choice of a particular MVS algorithm
dense 3D reconstruction in the last few yedrs[[d, 16, Aighly depends on the type of dataset and application of
5, [15,[7]. Automated dense 3D modeling facilitates scerigterest.
understanding and has countless applications in diffexent  In this paper, we are interested in dense 3D reconstruction
eas such as augmented reality, cultural heritage presmryat of large-scale environments using stereo imagery from a
autonomous vehicles and robotics in general. moving platform. We focus on the scenario of a stereo

One of the key ingredients in dense 3D reconstructionamera mounted on a vehicle or a robot exploring a large
methods isMulti-View Sereo (MVS) [IE]. MVS algorithms scene such as the one depicted in Figlre 1. Large-scale
can be roughly classified into four different categorids: environments pose new challenges to the dense 3D recon-
formable polygonal meshes [E] requiring a visual hull model struction problem such as large storage requirements and
as an initialization;voxel-based [15], requiring a bounding computational complexity.
box that contains the scene and the accuracy is limited by thewe propose a novel MVS approach that efficiently com-
voxel grid size;patch-based [4], requires reconstruction of bines the best of previous MVS approaches for our target
a collection of multiple small surface patches, andtiple application. Instead of fusing raw disparity maps from each
depth maps [@ ,E}’], that demands fusing multiple mapsstereo frame (which invariably yields large storage resuir
into a single global model. As mentioned ifl [4], MVS ments), we use the dense disparity maps as an initialization
algorithms can also be thought of in terms of the dataseys théor a patch-based surface reconstruction consideringi-mult

3 The authors are with the School of Interactive Compu'[-ple views. In this way, takmg advantage of the erX|l_3|I|ty
ing, Georgia Institute of Technology, Atlanta, GA 30332, AJS of patCh'based methods, we can check for geometric and
{pf a3, cbeal | 3, del | aert }@c. gat ech. edu photometric consistency of each individual patch, which




facilitates discarding moving objects from the final recon- Recently, Newcombet al. presented an impressive voxel-
struction. Then, we use efficient voxel grid filtering to dewn based dense 3D reconstruction approach from monocular
sample the dense point cloud for dealing with large storagmagery ILTLB]. This approach works well for small scale
requirements. environments and requires prior knowledge for a bound-
Our algorithm makes the assumption that the stereo rigg box that contains the scene, limiting the accuracy of
calibration and camera motion are already known. Stergahe 3D reconstruction to the voxel grid resolution. Both
calibration can be obtained offline, while camera motiompproaches [16, 15] require many redundant viewpoints to
can be obtained either online by incremental egomotioget accurate results. Our application target is a contisiyou
estimation methods such as visual odomdﬂy [7] or with amoving mobile platform, where objects can be observed only
offline bundle adjustment optimization including loop ales  over short periods of time.
constraints. Our algorithm has the following advantages:  The approach most similar to ours is tl&ereoScan
. Exploits dense disparity maps using efficient steresystem described if[7]. In this approach, the authors Eepo
matching. a dense 3D reconstruction pipeline fusing information from
« Performs efficient data association, checking for gedense disparity maps obtained from stereo imagery. In order
ometric and photometric consistency in a multi-viewto deal with the large amount of data from the fusion
setup taking into account the uncertainty of stereof multiple disparity maps, the authors propose a greedy

measurements. approach for solving the data association problem between
« Handles large storage requirements due to the use fo consecutive stereo frames. This greedy approach simply
voxel grid filtering techniques. reprojects reconstructed 3D points of the previous frartee in
« Is able to reject outliers and moving objects or obstaclg&e image plane of the current frame. When a point projects
in the scene. to a valid disparity, the 3D points from the current and pre-
« It is faster than state-of-the-art techniques. vious frames are fused by computing their 3D mean. Similar

The rest of the paper is organized as follows: In Sedfibn f° our approach, the authors assume that the camera motion
we describe the related work. Then, we briefly introducé obtained from an independent visual odometry pipeline
stereo vision and uncertainty formulation in Secfioh Iluro Working in parallel. The main limitation of StereoScan is
dense 3D reconstruction algorithm is explained in detail ifS greedy data association approach that considers only
Sectior[1V. Finally, experimental results and conclusiares WO consecutive frames without checking for geometric and
presented in SectidalV afidVI respectively. photometric consistency between the reconstructed points

Limiting the data association to just two frames and without
Il. RELATED WORK checking for geometric and photometric consistency intro-

One of the most popular MVS techniques is the patchduces many noisy points into the final model, without being
based approach also known as PMViS [4]. This method buildmle to deal with possible artifacts caused by dynamic ¢bjec
a dense 3D reconstruction of a scene based on collectiomst will corrupt the 3D model. In addition, without filtegn
of multiple small surface patches. PMVS basically consistthe storage requirements quickly become prohibitive for
of three different steps: feature matching, expansion andrge-scale scenarios.
filtering. In the matching step, a sparse 3D reconstruction
of the scene is obtained from a set of 2D features. Then, in IIl. STEREOVISION
the expansion step, this sparse 3D point cloud is densifiedstereo vision makes it possible to estimate 3D scene
by an iterative procedure that estimates patch geometry Bgometry given only two images from the same scene. We
minimizing a photometric cost function. Finally, outlieise  consider a conventional stereo rig in which two cameras are
removed in the filtering step. PMVS is able to handle movingeparated by a horizontal baseline. Rectificatlon [10] con-
objects thanks to the photometric consistency check betwesjgerably simplifies the stereo correspondence problem and
different images. The main limitation of PMVS is that ita|iows for straight-forward computation of dense disparit
is computationally very expensive due mainly to the patcaps, which form the base for the dense 3D reconstruction.
expansion step. For large-scale scenarios, such as the opggh value in the disparity map can be reprojected to a
we are interested in, PMVS would require several days t8D point h; = (z,y,z)" € R3 with respect to the camera

obtain dense 3D reconstructions even when using efficiegbordinate frame based on the projective camera equations:
clustering techniques for the set of input |mad§s [5]

Pollefeyset al. HE] presented an efficient approach for z = f URZL = ,T]i
real-time 3D reconstruction from video of urban scenes.
Their approach considers a system equipped with 8 cameras xr = Lf_“o) 1)
plus GPS/INS data mounted on a moving car, exploiting par- ‘
allelization and GPU processing. They use plane-sweeping y = Z’(vf*vo)

stereo |I|2] as a stereo matcher for obtaining dense disparity
maps from different views. Then, multiple depth maps are wheref is the camera focal lengtkw, vo) is the principal
fused into a single global model by exploiting visibility point, B is the stereo baseline and,,v;) and (ug,vr)
information. are the stereo measurements in the left and right images,



respectively. Note that for rectified stereo images= vg = computational complexity. Each stereo keyfrarAg with
v. The horizontal disparityl,, is the difference in pixels k£ =1... N comprises:
between the horizontal image projections of the same 3D, Camera rotationR* ¢ SO(3).

point in the right and left images. « Camera translatiort® € R3.
Similarly to [ﬂ], our sensor error model is composed of , [eft rectified RGB image/¥: R? — R3.
two parts:pointing error o, andmatching error ,,. Pointing « Normalized zero mean and unit variance left rectified

error is the error in image measurements due to camera RGB image, I}, ... R? — R3.
calibration inaccuracy, whereas matching error is due ¢o th , Right rectified RGB imagel%: R? — R3.

inaccuracy of the stereo matching algorithm. Given these , Disparity map,/%: R? — R.
values, we can compute the covariance matrix of the stereoThg camera rotation and translation are defined such that a

t ; ; .
measurementtuy,, v, d)" in the disparity space as: 3D pointY; = (z,y, z)" € R? in the world coordinate frame
JZ 0 0 can be transformed into the camera coordinate frame with:
S; = 0 o2 0 (2) . .
0 0 o2 hi = R*(Y; —t") (5)

To obtain the covariance matriR, of the reconstructed 3D  and assuming a pin-hole camera model, the projection of
point h; associated with stereo measuremefits, v,d,)’, the 3D pointh; into the image plane is:
the error is propagated from the 2D measurement space to
3D by means of linear uncertainty propagation as: U =K (RF(Y; —t")) (6)

where K is the matrix representing the camera intrinsics

= St . ; .
Pio= Ji-Si-J; @) andu, = (u,v,1)" is the vector of pixel measurements in
homogeneous coordinates. In addition, eathpoint h; has
ox 8z Oz B g _uB an associated RGB color vecter = (r,g,b)" € R3. Now,
dur  Ov  Ody du d we will describe in detail each of the main steps in our MVS
algorithm.
01 01 01 B vB
Ji = au‘UL B ad‘li = 0 @ _l;lﬁ (4)

A. Dense Sereo Matching
0z 0z 0z 0 0 B

e B B —-Lz Reliable stereo matching is critical in order to obtain
i i ) o accurate dense 3D point clouds. For this purpose, we use
whereJ; is the Jacobian of the 3D point with respectto o Eficient Large-Scale Stereo Matching (ELAS) method
the stereo measuremerits; , v,d, ). The covariance matrix \ynich is freely available[[6]. ELAS provides dense high
P; estimates the uncertainty we can expect from a recoy ity disparity maps without global optimization, while
structed 3D point. The uncertainty error grows quadra§ical o aining faster than many other stereo methods. For each

with respect to the depth. We denote ty = trace(F;) gtereq keyframe"), we obtain a dense disparity mdp,
the trace of the covariance matrik, and this is used as image from the left and right rectified images.

a measure of the uncertainty and as a weighting function
for the reconstructed 3D points and color information in ouB. Multi-View Geometric and Photometric Consistency

MVS approach. Considering that each stereo frame gives rise to thousands
of 3D points, transforming all of these into a global 3D

) ) model would yield a very noisy reconstruction with lots
Our approach assumes that stereo camera calibration ggdeqyndant points, and consequently storage requirament

motion are known. In addition, we assume that images agg yohibitive proportions for large scenarios. Therefde

given in a time-ordered sequence. Our approach is appiicably g the introduction of many redundant points we solve the

in batch as well as incremental modes. Camera motion Ca¢s association problem between multiple stereo frameés an
be obtained online by egomotion estimation methods SUGRyif, geometric and photometric consistency for all psint
as visual odometry or after an offline bundle adjustmentps’is in principle similar to the photometric consistency
optimization including po_ssuble loop closure constramts employed in MVS approache@ “g 4] with the key difference
Our dense reconstruction approach has these main stepsa¢ for each pixel we rely on the depth provided by the stereo

isp

IV. DENSE3D RECONSTRUCTION

1) Dense stereo matching. matching algorithm instead of minimizing a photometrictcos
2) Patch-based reconstruction with multi-view geometriﬁjnction to find the g|oba||y optima| depth of each patch_

and photometric consistency analysis. Figure[2 depicts a graphical example of our multi-view stere
3) Outlier removal and voxel grld fllterlng approach Considering three views.

We first select a subset of stereo keyframes from the input We choose a central reference stereo keyframen a
images to enforce a minimum distance in camera motiolmcal neighborhood ofn stereo views (in our experiments
between frames which will be processed. This is to avoidie considerm = 3,5). The index of the reference stereo
adding redundant images which would not contribute ankeyframer in the local neighborhood af. stereo frames is
new information to the dense 3D model, but only increas@ken as the central view,= (m — 1) /2 + 1.



R - _ _ rest of viewsFj, € V' where the point is visible:

1 k=r+n

9(0) = 177 > NCC(F,, Fy,p) ®)

k=r—n

wheren = (m — 1)/2 for the sake of brevity, andV/|
denotes the number of views where the pgins predicted
to be visible, i.e. the number of views for which the point
passed the geometric consistency check. If the mean photo-
metric scoreg, exceeds a threshold valdg.., and|V| is
3 or greater, we proceed to fuse the 3D point with respect
to the world coordinate frame and color information into the
dense reconstruction as the following weighted average:

Right Disparity

Fig. 2. Multi-view stereo approach checking geometric andt@metric k=rtn k=rtn

consistency. For a pixep in the left reference image that has a valid k_Zﬁy Wi Yik k_Zﬁy Wik * Ci,k
disparity, we check first for geometric consistency between different Y=, G = e 9)
views. If the geometric consistency is successful, we perftite photo- S wik S wik

metric consistency analysis. k=r—n k=r—n

wherew; j, is the uncertainty weight of the reconstruction
of point 2; from the viewk. Similarly, Y; ,, andc; ; denote
the 3D point with respect to the world coordinate frame and
For each pixelp = (ur,vr) from the left reference color information for pointi from view k.
keyframe imagel; which has a valid disparityl,,, we first In order to reduce computational complexity and to avoid
perform a geometric consistency check with respect to thedding redundant 3D points as the neighborhood window
other views in the neighborhood. We compute the 3D poirdlides through the sequence, we keep track of image projec-
h; and the associated covarianég as described in EQJ 1 tions of already reconstructed 3D points in their respectiv
and Eq[B respectively. If the trace of the covariance matriynages using a mask. In this way, for each new reference
w; is below some threshold...,, we then project the point view, we check the visibility masks to reconstruct only #os
h; into the left images for the othern — 1 views in the 3D points which were not reconstructed previously.
neighborhood. We then check that the projection of each 3 . e
point h; from the reference view into neighboring frames™ Outliers Removal and Voxel Grid Filtering
has a valid disparity and low uncertainty. Finally, we also Once we have computed a dense 3D point cloud from
check that the 3D difference between all reconstructed 3@ reference stereo keyfrante., we filter possible outliers

points expressed in the world coordinate frame is within By means of aradius removal filter. This filter removes
thresholdT ;. those 3D points that do not have at least some number

For all 3D points from the reference image which passe@l N€ighbors within a certain range. Then, in order to
the geometric consistency check, our algorithm then pnix:eereduce the computational purden and.storage reqw_rements,
to a photometric consistency check with respect to the oth&f€ d‘?W”5amp'e, the 3!3 point clou_d using a voxel grid filter
views in the neighborhood. For each pixel= (ur,vr) that fits to the dimensions of the input point cloud. In each
from the left reference image, we compute the normalize¥P*€l: the 3D points are approximated with their centroid,
cross correlatiolNCC (F,., Fy, p) between au x ; window representing more accurately the underlying surface.

centered op and the corresponding windows centered on theh Once we havg profcesied onekstefreo keyfr_allmhe, we repeat
projections in each of the views, with subpixel accuracy. € Same procedure for the next keyframe until the sequence

For the NC'C we use the textures from the normalized zerémiShes' After processing all stereo keyframes, we appy th
mean unit variance left imageg: Similar to E] we voxel grid filter over the whole dense 3D point cloud to fuse
norm”*

use a version oNCC for I-dimensional RGB color vectors the 3D points into a global voxel grid structure. This is done
with normalization per color channel. mainly for those sequences where the vehicle or robot comes

to areas that were previously mapped.

-1 o o V. RESULTS
];0 (0 (7) = %) - (e1 (5) — 1) We use the KITTI visual odometry RGB dataset [8] for
NCC (co, 1) = the evaluation of our dense 3D reconstruction approach.

lil (co () —)° - lil (e1 () —e1)? This dataset consists of stereo imagery with accuratecstere
J=0 j=0 calibration. The images have a resolution 141 x 376
(7)  pixels. For the greedy projection surface reconstructioth a
The NCC returns a scalar value betwegnl, 1], where the radius removal and voxel grid filters, we use the efficient
1 indicates perfect correlation. We compute an average phoaplementations from the Point Cloud Library (PCm[U].
tometric scorey(p) that comprises the sum of photometric Typical values for the parameters in our method afe=
scores for the pixep between the reference image and thé.5 pixels, o, = 1.0 pixel, T.,, = 0.5, Tyise = 0.5 M,



Tohoto = 0.7 and patch siz&g x 7 pixels. All timing results
were obtained with an Intel Core i7-3770 CPU.

reconstructed 3D points in the StereoScan case was scaled
down by a factor of ten for clarity reasons. StereoScan
produces large amount of 3D points, some of which are

A Comparison to PMVS and Stereoscan . noisy and redundant. In large-scale environments the stor-
We compare our dense 3D reconstruction approach fe requirements of StereoScan can become prohibitive. In
PMVS and StereoScan. For PMVS we use the PMVSgontrast, our method returns a more reasonable number of
implementatiofl. We configure PMVS options so that it 3p points. In addition, one can control the output number
processes images in sequence, enforcing the algorithmeto yg 3p points with the photometric threshold and the voxel
only images with nearby indices to reconstruct 3D points. Fqyrig resolution. PMVS returns the lowest number of recon-
the StereoScan case we use our own implementation and fuggcted 3D points. PMVS is more targeted Rbotosynth-
the information between two corresponding 3D points if botk@),pe systems|[1], where there is a large number of images
disparities are valid and the distance between reconstiuctiom the same object in a small area. In this case, redundant

3D points is below the threshold;;. In our method we yiewpoints improve the estimation of the patch geometry.
considerm = 3 views, a voxel grid resolution of 5 cm and a

photometric consistency threshdld;,.., = 0.7. This value
is also used in PMVS.

Figure[3 depicts a comparison of our method to PMV:
and StereoScan showing the computation time versus t
number of input images for the first sequence in the KITT
dataset. We observe that our method is the fastest one. T
reason why it is faster than StereoScan is due to the u
of a visibility mask, keeping track of image projections of
the reconstructed 3D points in their visible images, renlyici
computational complexity. PMVS is highly time consuming
even for a small set of images. This is because it trie
to optimize the 3D position and normal of each patch ir
each reference image by minimizing a cost function base
on the photometric error in a multi-view setup. In contrast
our method and StereoScan use the available 3D geome
from the disparity map and perform data association betwet
different views, which is faster than running an iterativan
linear optimization per patch.
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Fig. 4. Comparison to PMVS and StereoScan: Number of recansttu
3D points vs number of images. Note that the number of reconsti8D
points that is reported for StereoScan is scaled by a faétmofor clarity
reasons.
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Table[ shows information about the number of recon-
structed 3D points at each level of our MVS approach con-
sidering two different photometric threshold$;.:, = 0.2
andTyh0t0 = 0.8. In addition, we also show the percentage
between the number of accepted points at each step and the
number of points that have a valid disparity for each stereo
frame. We can observe that in both cases the number of
3D points obtained after the voxel grid filtering is a small
fraction of the original number of points facilitating stge
requirements in large-scale scenarios.
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B. Detection of Moving Objects

One of the nice properties of PMVS and similar patch-
Fig. 3. Comparison to PMVS and StereoScan: Computational tise \p'_ase_d methods SPCh as ours, Is that they can d|5C5_‘rd specular
number of images. highlights or moving objects in the scene (pedestrians, car
etc.). Assuming that the surface of an object is Lambertian,

Figure[3 shows a comparison of our method to PMV§he photometric score functiog(p) will give low scores for

and StereoScan showing the number of reconstructed
points versus the number of input images. The number

LAvailable from:htt p: /7 www. di . ens. fr/ prmvs/

feas which have specular highlights or moving objectsen th

8?|nage, and therefore these points will not be added to the
final 3D model. Figur€ls depicts an example of one sequence
where there are several moving objects (cars). StereoScan


http://www.di.ens.fr/pmvs/

Step Our method | Our method GPU implementations since the operations in the multi-view
Tonoto = 0.2 | Tphoto = 0.8 3D reconstruction approach are independent per pixel.
# Points Disparity 323,420 323,420
# Points Geometric 133,334 133,334 Step Time (ms)
% Accepted 41.23 41.23 Stereo Matching 157.74
# Points Photometric 57,675 9,310 RGB Normalization 2.51
% Accepted 17.83 2.88 Multi-view 3D (m=3) | 1303.28
# Points Fusion 8,851 1,885 Outlier Removal 351.32
% Accepted 2.74 0.58 Voxel Grid Filter 2.76
Total 1811.61
TABLE |
AVERAGE NUMBER OF RECONSTRUCTELBD POINTS PER STEP AND TABLE Il
PERCENTAGE OF ACCEPTED POINTS WITH RESPECT TO POINTS WITH COMPUTATION TIMES IN MS FOR THE MAIN STEPS OF OURMVS
VALID DISPARITY PER STEREO FRAME APPROACH

fails to reject these points and adds them to the final model, VI. CONCLUSIONS ANDFUTURE WORK

creating artifacts in the final model. This occurs because | this paper we have presented a novel MVS approch
StereoScan only considers two consecutive stereo frames fgr dense 3D reconstruction in large-scale environments
data association based on the disparity information. It sugsing stereo imagery. We have shown that efficiently fusing
a limited multi-view setup moving objects are not detectegjsparity maps, while checking geometric and photometric
properly. In contrast, our method and PMVS are able tgonsistency of patches in a multi-view setup, yields dethil
discard those 3D pOintS from the final model. 3D mode's W|th IOW Storage requirements_

In the future we are interested in possible applications of
the dense 3D models for planning and scene understanding.
In addition, we would like to explore the fusion of our dense
3D reconstruction approach with incremental localization
and mapping methods such as iISANI2|[12].
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