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Abstract— We propose a novel approach for estimating a
dense 3D model of neoplasia in colonoscopy using enhanced
imaging endoscopy modalities. Estimating a dense 3D model of
neoplasia is important to make 3D measurements and to classify
the superficial lesions in standard frameworks such as the Paris
classification. However, it is challenging to obtain decent dense
3D models using computer vision techniques such as Structure-
from-Motion due to the lack of texture in conventional (white
light) colonoscopy. Therefore, we propose to use enhanced imag-
ing endoscopy modalities such as Narrow Band Imaging and
chromoendoscopy to facilitate the 3D reconstruction process.
Thanks to the use of these enhanced endoscopy techniques,
visualization is improved, resulting in more reliable feature
tracks and 3D reconstruction results. We first build a sparse 3D
model of neoplasia using Structure-from-Motion from enhanced
endoscopy imagery. Then, the sparse reconstruction is densified
using a Multi-View Stereo approach, and finally the dense 3D
point cloud is transformed into a mesh by means of Poisson
surface reconstruction. The obtained dense 3D models facilitate
classification of neoplasia in the Paris classification, in which
the 3D size and the shape of the neoplasia play a major role
in the diagnosis.

Index Terms— Narrow Band Imaging, Chromoendoscopy,
Structure-from-Motion, Multi-View Stereo, Poisson Surface
Reconstruction, Paris classification.

I. INTRODUCTION

Colorectal cancer is one of the leading causes of cancer-
related deaths and one of the most common cancer in men
and women in the world. Early diagnosis greatly impacts
colorectal cancer survival rates. One of the most extended
modalities to facilitate early diagnosis is colonoscopy [1], in
which an endoscope is introduced through the rectum and
the colon. Physicians can use the endoscope video stream
to detect and identify tissue abnormalities such as neoplasia
(an abnormal growth of tissue).

Standard (white light) colonoscopy is the most widely
used and preferred colorectal cancer screening technique[2].
However, substantial miss rates for adenoma and cancers
have been reported with standard colonoscopy. Therefore,
enhanced colonoscopy techniques such as Narrow Band
Imaging (NBI) and chromoscopy have been widely used
recently to improve visualization and colorectal cancer di-
agnosis [3], [4]. NBI [5] is a high-resolution endoscopic
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technique that improves visualization by exploiting the tis-
sue absorption linked to the wavelenght of the light, en-
hancing the fine structure of the mucosal surface and the
microvascular and microstructural pit patterns. On the other
hand, chromoscopy [6] applies contrast dyes such as indigo
carmine to improve the detection of mucosal abnormalities.
Chromoscopic agents permit early detection of neoplastic
colorectal lesions, in particular flat and depressed types [7].
In general, chromoscopy is a time consuming preparation
due to the application of the staining agent, whereas in
NBI no preparation is needed due to the modification of the
endoscopic system.

The diagnosis of neoplasia relies on a general framework
for the endoscopic classification of superficial lesions known
as the Paris classification [8]. In this classification, neo-
plasias are classified into different levels according to its
size, shape and depth of invasion into the submucosa. This
classification directly influences the decision of resection.
Within this context, we think it is of great interest to develop
non-invasive computer vision techniques that can obtain a
dense 3D model of neoplasias and therefore provide more
feature to apply the Paris classification.

Computer vision techniques such as Structure-from-
Motion (SfM) [9] seem to be an interesting approach for
diagnosis in colonoscopy. However, it is challenging to use
SfM approaches in standard colonoscopy due to the lack of
texture and the paucity of reliable 2D features to be tracked
over several frames. To overcome this limitation we can take
advantage of enhanced colonoscopy techniques such NBI and
chromoscopy. In both cases, the enhanced visualization and
pit patterns provide reliable feature tracks that can be used
efficiently in SfM. Figure 1 depicts an example of a 3D
neoplasia reconstruction with standard colonoscopy and with
chromoscopy.

In this paper we propose an off-line method that uses
SfM to build an initial sparse 3D model of neoplasia from
enhanced colonoscopy imagery. Then, the initial 3D model
is densified by means of Multi-View Stereo (MVS) tech-
niques [10]. The resulting dense 3D point cloud is then
transformed into a dense 3D mesh by using Poisson surface
reconstruction [11]. The final dense 3D model can be used by
the physicians for classifying neoplasias according to Paris
classification and only then making the decision of resecting
it or not. The rest of the paper is organised as follows: we
describe related work in Section II and briefly review the
Paris classification in Section III. Our dense 3D modeling of
neoplasia is introduced in Section IV. Experimental results



Fig. 1. 3D Neoplasia reconstruction results. First column: standard
colonoscopy. Second column: enhanced colonoscopy. First row: sample
input image. Second row: 3D view from the dense model. It can be observed
that the 3D model with standard colonoscopy cannot recover accurately the
3D geometry of the neoplasia due to the lack of texture. However, when
using enhanced colonoscopy the 3D model is recovered more accurately.

are reported in Section V. Final conclusions and future work
are described in Section VI.

II. RELATED WORK

Computer vision techniques that recover the 3D geometry
of a rigid scene have been proposed in different medical
imaging applications. These techniques use an SfM pipeline
to recover a sparse 3D geometry by either using monoc-
ular [12], [13] or stereo imaging devices [14]. The main
problem with monocular frameworks is that the 3D geometry
of the scene can be recovered up to a scale factor, while in
the stereo case this ambiguity does not occur. In addition,
sparse 3D models do not provide enough information to be
interpreted by physicians.

In colonoscopy, there have been some approaches focused
more on automatic segmentation and classification of neo-
plasias based on 2D appearance models [15], [16]. While this
is an interesting and challenging problem, the gold standard
for the endoscopic classification of superficial lesions is the
Paris classification, in which neoplasias are classified into
different types of lesions according to their 3D size and
shape. Therefore, we think that an approach that can estimate
the size of neoplasias in 3D is more interesting than 2D
segmentation approaches that do not recover the underlying
3D geometry. SfM in standard colonoscopy was tried before
in [12]. However, the main flaw of this approach is that it
cannot recover accurately the 3D surface due to the lack of
texture and the sparse number of points.

Recently, Chadebecq et al. [17] proposed an image-based
method to estimate the size of the neoplasias combining
Depth-From-Focus (DFF) and Depth-From-Defocus (DFD)
techniques [18], [19]. Even though, this method is efficient
for recovering the absolute scale by automatically detecting
the blur-unblur breakpoint in a colonoscopy video sequence,
it is not reliable for estimating a dense 3D model of a neo-
plasia. This is because the method assumes that a neoplasia
is frontoparallel to the gatroscope’s tip (which is a strong

assumption that is not true in most of the scenarios) yielding
an underestimated size.

III. THE PARIS CLASSIFICATION

In this section, we briefly review the Paris classifcation
for neoplastic lesions in colonoscopy [8]. In the Paris classi-
fication, neoplastic lesions with superficial morphology are
classified as Type-0. Other more advanced gastric tumours
are classified in different types. Neoplastic lessions are those
whose endoscopic appearance suggests that the depth of
penetration in the digestive wall is not more than into
the submucosa. Depending on the size and shape, Type-0
neoplastic lesions are classified into different sublevels:

• 0-I: Polypoid, pedunculated or sessile
• 0-IIa: Non-Polypoid, superficial or elevated
• 0-IIb: Non-Polypoid, flat
• 0-IIc: Non-Polypoid, superficial shallow, depressed
• 0-III: Non-Polypoid, excavated

IV. DENSE 3D NEOPLASIA MODELING

Given an enhanced colonoscopy video stream with NBI or
chromoscopy settings the user chooses one frame from which
the 3D reconstruction starts. Posterior keyframes are selected
automatically from the video stream considering that we have
enough motion and feature correspondences between each
pair of selected frames. Figure 2 depicts an overall overview
of the different reconstruction steps in our approach.

Fig. 2. Different steps in our dense 3D neoplasia modeling.

Firstly, the endoscope is calibrated in a setup process to
estimate camera’s intrinsics [20]. We then perform radial
distortion correction which is usually large in colonoscopy
imagery. Considering that the camera’s intrinsics are known,
we first perform SfM on a set of selected keyframes with
enough baseline between them. The goal of SfM algorithms
is to reconstruct an unknown 3D scene and camera motion
from a set of feature correspondences. We use a similar SfM
pipeline as the one described in [21], using the Speeded
Up Robust Features (SURF) [22] as our feature detector
and descriptor. We avoid detecting features in areas where
we have specular reflectance by detecting saturated blobs
in the image and use these blobs as an input mask for
the feature detector algorithm. Once features are detected
in every keyframe, we match feature descriptors between the
image pairs using the nearest neighbor distance ratio strategy
as described in [23]. Then, we identify the inliers from the
set of putative matches by fitting a Fundamental matrix in a
RANSAC procedure [24].



The output of the SfM pipeline is a sparse 3D reconstruc-
tion of a rigid scene and the camera motion (rotation and
translation) for each keyframe. This kind of 3D model is
still not useful enough to measure the size of neoplasia due
to the small number of 3D points. Therefore, we run a model
densification step. We use the MVS technique described
in [10] to obtain a dense 3D point cloud from the optimized
camera poses. This technique reconstructs a set of oriented
patches covering the surface of an object of interest by
minimizing a photometric discrepancy function. Then, the
dense 3D point cloud is converted to a dense mesh by using
Poisson surface reconstruction [11].

At this point we have a dense 3D mesh of a surface
up to a scale factor. In order to recover the correct scale
of the 3D model, we use the method described in [17].
By combining DFF and DFD techniques and finding the
blur-unblur breakpoint in the analyzed video sequence this
method is able to obtain the correct scale of the 3D model.

V. RESULTS

In order to validate our approach, we show experimental
resuls on several in-vivo sequences. We show quantitative
results on sequences with different types of neoplasias. All
the sequences were acquired with the Olympus HQ-190
endoscope. We consider several chromoscopy sequences and
one NBI experiment.

Chromoscopy and NBI have an extreme importance in the
quality of the dense 3D model reconstruction, since SfM
and MVS methods are prone to failure when reconstructing
textureless surfaces. Dense models cannot be obtained with
normal endoscope settings. Figure 3(a) depicts the detected
SURF features using standard colonoscopy, whereas (b)
depicts the detected features using enhanced colonoscopy
(chromoscopy) for the same surface. For both images we
used the same detector response threshold. As can be ob-
served, the texture of the underlying surface is highlighted
when using enhanced colonoscopy and thus the number
of detected features is much higher than in the standard
colonoscopy case.

(a) (b)
Fig. 3. Number of detected features per image: (a) 138 features using
standard colonoscopy (b) 1069 features using enhanced colonoscopy. The
features are depicted in red circles with radius proportional to the scale of
the detected keypoint.

Figure 4 shows 3D reconstruction results for five dif-
ferent experiments. For each experiment we show a curve
surrounding the neoplasia of interest in red, highlighting
the superficial lesion for which we obtained size estimates.

Table I shows size estimation and Paris classification results
for the different experiments. We compute the diameter of
the different neoplasias, depicted by a red line as shown
in Figure 4. The first experiment shows an adenoma whith
a sessile polyp. The second one consists of a laterally
spreading tumor in the colon. The third experiment consists
of two main pendunculated hyperplasias. The fourth one
shows a laterally spreading adenoma in the colon, whereas
the fifth experiment consists on two sessile polyps.

Exp. Diameter (mm) Paris Cl.
1 3.32 0-IIa
2 7.29 0-IIa
3 2.87 0-Ip
4 0.82 0-IIc
5 2.91 0-IIa

TABLE I
SIZE ESTIMATION OF NEOPLASIAS AND PARIS CLASSIFICATION

RESULTS.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an off-line method for
building a dense 3D model of neoplasia using enhanced
colonoscopy (NBI and chromoscopy). The use of enhanced
colonoscopy facilitates SfM approaches to obtain reliable
3D reconstruction results due to the improved texture. To
the best of our knowledge, this is the first work to propose
SfM in enhanced colonoscopy obtainind reliable 3D dense
neoplasia reconstructions. We believe this is an important
contribution since previous approaches that use SfM in
standard colonoscopy are not able to estimate a reliable 3D
surface due to the lack of texture and paucity of reliable
features. The experimental results are encouraging and show
that the proposed approach can be of benefit to physicians
in order to facilitate the diagnosis of neoplasia according to
the Paris classification. In the near future, we are interested
in performing an extensive evaluation with ground-truth data
and developping a real-time system based on the proposed
techniques with automatic classification of neoplasia that can
be used by physicians during exploration.
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