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Abstract

We propose a novel and fast multiscale feature detection and description approach
that exploits the benefits of nonlinear scale spaces. Previous attempts to detect and de-
scribe features in nonlinear scale spaces are highly time consuming due to the compu-
tational burden of creating the nonlinear scale space. In this paper we propose to use
recent numerical schemes called Fast Explicit Diffusion (FED) embedded in a pyrami-
dal framework to dramatically speed-up feature detection in nonlinear scale spaces. In
addition, we introduce a Modified-Local Difference Binary (M-LDB) descriptor that is
highly efficient, exploits gradient information from the nonlinear scale space, is scale and
rotation invariant and has low storage requirements. We present an extensive evaluation
that shows the excellent compromise between speed and performance of our approach
compared to state-of-the-art methods such as BRISK, ORB, SURF, SIFT and KAZE.

1 Introduction
The best known multiscale feature detection and description approaches are SIFT [11] and
SURF [3], SURF being less computationally demanding than SIFT. Both approaches make
use of the Gaussian scale space, either by constructing the Gaussian scale space in a pyra-
midal framework such as in SIFT, or by approximating Gaussian derivatives through box
filters as in SURF. This has important drawbacks since Gaussian blurring does not preserve
object boundaries and smoothes to the same extent details and noise at all scales, spoling
localization accuracy and distinctiveness.

To overcome this problem, some methods have been presented recently [2, 17] that aim
to detect and describe features in nonlinear scale spaces. This makes blurring locally adap-
tive to the image data, blurring small details but preserving object boundaries. KAZE fea-
tures were introduced in [2]. This method increases repeatability and distinctiveness with
respect to SIFT and SURF thanks to the use of nonlinear diffusion filtering. The main draw-
back of KAZE is that it is computationally intense. Since there are no analytical solutions
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to solve the nonlinear diffusion equation, one needs to use numerical methods to approxi-
mate the solution. In KAZE, this is done by means of Additive Operator Splitting (AOS)
schemes [19]. While AOS schemes are absolutely stable for any time step and easily par-
allelizable, they require solving a large system of linear equations to obtain a solution. BF-
SIFT features [17] are detected by replacing the standard Gaussian scale space performed
by SIFT by an anisotropic scale space using bilateral filtering. BFSIFT improves over SIFT
in Synthetic Aperture Radar (SAR) image matching problems where images are corrupted
by speckle noise. However, the price to pay is the higher computational complexity of the
bilateral filter for building the nonlinear scale space, making this approach prohibitive for
real-time image matching applications.

With the proliferation of camera-enabled mobile devices that have limited computa-
tional resources, new features have appeared that aim to reduce computational complexity
while keeping up to the performance of methods such as SIFT and SURF. ORB [15] and
BRISK [10] speed-up feature detection and description by combining modifications of the
FAST corner detector [14] and binary descriptors based on BRIEF [4] with scale and rota-
tion invariance. ORB and BRISK features are much faster to compute than SIFT and SURF,
while showing comparable performance mainly for small image transformations.

In this paper we aim to obtain low-computationally demanding features taking advan-
tage of the benefits of nonlinear diffusion filtering. For this purpose, we introduce a recent
mathematical framework called Fast Explicit Diffusion (FED) [6, 7] to feature detection
and description problems. By means of FED schemes, a nonlinear scale space can be built
much faster than with any other kind of discretization scheme. Furthermore, FED schemes
are extremely easy to implement and are more accurate than AOS schemes. We propose to
embed FED schemes in a pyramidal framework with a fine to coarse strategy to speed-up
dramatically feature detection in nonlinear scale spaces. We call these features Accelerated-
KAZE (A-KAZE) due to the dramatic speed-up introduced by FED schemes embedded in a
pyramidal framework.

To preserve low computational demand and storage requirement, we also introduce a
highly efficient Modified-Local Difference Binary (M-LDB) descriptor. While the original
LDB descriptor presented in [20] is neither rotation nor scale invariant as BRIEF is, we build
a robust binary descriptor that is rotation and scale invariant and exploits gradient informa-
tion from the nonlinear scale space, increasing distinctiveness. Our novel A-KAZE features
are faster to compute than SURF, SIFT and KAZE and also exhibit much better performance
in detection and description than previous methods, including ORB and BRISK.

2 Nonlinear Diffusion Filtering
Nonlinear diffusion filtering describes the evolution of the luminance of an image through
increasing scale levels as the divergence of a certain flow function that controls the diffusion
process. These approaches are described by nonlinear partial differential equations (PDEs),
due to the nonlinear nature of the involved differential equations that diffuse the luminance
of the image through the nonlinear scale space. The classic nonlinear diffusion equation is:

∂L
∂ t

= div(c(x,y, t) ·∇L) , (1)

where div and ∇ are respectively the divergence and gradient operators, and L is the image
luminance. Thanks to the introduction of a conductivity function (c) in the diffusion equation,
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it is possible to make the diffusion adaptive to the local image structure. The function c
depends on the local image differential structure, and this function can be either a scalar or a
tensor. Time t is the scale parameter, and larger values lead to simpler image representations.
In anisotropic diffusion the image gradient magnitude controls the diffusion at each scale
level. This way, the conductivity function c is defined as:

c(x,y, t) = g(|∇Lσ (x,y, t)|) , (2)

where the function ∇Lσ is the gradient of a Gaussian smoothed version of the original image
L. We consider one of the two conductivity functions introduced in the seminal work of
Perona and Malik [13], although other conductivity functions are also possible. The conduc-
tivity function g2 promotes wide regions over smaller ones:

g2 =
1

1+ |∇Lσ |2
λ 2

(3)

The parameter λ is the contrast factor that controls the level of diffusion. It determines which
edges have to be enhanced or kept and which ones have to be cancelled. Since there are no
analytical solutions for solving the nonlinear diffusion equation, one needs to approximate
the solution by discretizing the PDE. The easiest option is to use explicit schemes, since these
schemes are straightforward to implement. However, they are computationally intense, since
many iterations are needed to reach a desired scale level due to stability problems. Another
alternative is using semi-implicit schemes that can be solved efficiently using Additive Oper-
ator Splitting (AOS) schemes [19]. AOS schemes are absolutely stable for any step size and
can be used for creating nonlinear scale spaces for feature detection and description prob-
lems [2]. However, AOS schemes require solving large systems of linear equations at each
time step.

2.1 Fast Explicit Diffusion

FED combines the advantages of explicit and semi-implicit schemes while avoiding their
shortcomings. FED schemes are motivated from a decomposition of box filters in terms of
explicit schemes [6, 7]. Iterated box filters approximate Gaussian kernels with good quality
and are easy to implement. The main idea is to perform M cycles of n explicit diffusion steps
with varying step sizes τ j that originate from the factorization of the box filter:

τ j =
τmax

2cos2
(

π
2 j+1
4n+2

) , (4)

where τmax is the maximal step size that does not violate the stability condition of the explicit
scheme. The corresponding stopping time θn of one FED cycle is obtained as:

θn =
n−1

∑
j=0

τ j = τmax
n2 +n

3
. (5)

Some of the step sizes τ j from Eq. 4 may violate stability conditions. However, due
to the similarities between FED and box filtering (always stable), we obtain also a stable
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scheme at the end of a FED cycle. The discretization of Eq. 1 using an explicit scheme can
be expressed in vector-matrix notation as:

Li+1−Li

τ
= A

(
Li)Li , (6)

where A(Li) is a matrix that encodes the conductivities for the image and τ is a constant
time step size such that τ < τmax in order to respect stability conditions. For more details
about how to build the matrix A(Li) we recommend the reader to check the seminal work of
Weickert et al. [19]. In the explicit scheme, the solution Li+1 is computed in a direct way
from the solution at the previous evolution level Li and image conductivities A

(
Li
)
:

Li+1 =
(
I + τA

(
Li))Li , (7)

where I is the identity matrix. Considering the a priori estimate Li+1,0 = Li, a FED cycle
with n variable step sizes τ j is obtained as:

Li+1, j+1 =
(
I + τ jA

(
Li))Li+1, j , j = 0, . . . ,n−1 . (8)

It is important to note here that the nonlinearities from the matrix A
(
Li
)

are kept constant
during the whole FED cycle. Once a FED cycle is done, we compute the new values of the
matrix A

(
Li
)
.

3 Accelerated-KAZE Features
In this section we describe our novel feature detection and description method. We use FED
schemes for building a nonlinear scale space considering anisotropic diffusion. To speed-
up the construction of the nonlinear scale space, we embed the FED scheme into a fine
to coarse pyramidal framework. The pyramidal strategy and FED schemes allow for fast
nonlinear scale space construction, suitable for robust feature detection and description.

3.1 Building a Nonlinear Scale Space with Fast Explicit Diffusion
Firstly, we need to define a set of evolution times from which we can build the nonlinear
scale space. The scale space is discretized in a series of O octaves and S sub-levels. The
set of octaves and sub-levels are identified by a discrete octave index o and a sub-level one
s. The octave and the sub-level indexes are mapped to their corresponding scale σ (pixels)
through the following formula:

σi (o,s) = 2o+s/S, o ∈ [0 . . .O−1], s ∈ [0 . . .S−1], i ∈ [0 . . .M] , (9)

where M is the total number of filtered images. Now, we need to convert the set of discrete
scale levels in pixel units σi to time units, since nonlinear diffusion filtering operates in time
units. We use the mapping σi→ ti described in [2] to convert from pixel units to time units:

ti =
1
2

σ
2
i , i = {0 . . .M} . (10)

Additionally, the input image can be convolved with a Gaussian of standard deviation σ0 to
reduce noise and possible artefacts. From the smoothed input image we compute the contrast
factor λ in an automatic way as the 70% percentile of the gradient histogram.
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Algorithm 1 Pyramidal FED approach for
nonlinear diffusion filtering

Input Image L0, contrast parameter λ , τmax and set of
evolution times ti
Output Set of filtered images Li, i = 0 . . .M

for i = 0→M−1 do
1. Compute diffusivity matrix A

(
Li)

2. Set FED outer cycle time T = ti+1− ti
3. Compute number of FED inner steps n
4. Compute step sizes τ j
5. Set Prior Li+1,0 = Li

Li+1 = FEDCYCLE(Li+1,0,A
(
Li) ,τ j)

if oi+1 > oi then
Downsample Li+1 with mask

( 1
4 ,

1
2 ,

1
4

)
λ = λ ·0.75

end if
end for

Algorithm 2 FED Cycle
function FEDCYCLE(Li+1,0,A

(
Li) ,τ j)

for j = 0→ n−1 do
Li+1, j+1 =

(
I + τ jA

(
Li))Li+1, j

end for
Return Li+1,n

end function

Given the input image and the contrast factor we can start the FED scheme. We use
M−1 outer FED cycles and for each cycle we compute the minimum number of inner steps
n. In the case of 2D images, the maximal step size that does not violate stability conditions
is τmax = 0.25, considering a grid size of 1 pixel for the image derivatives. We consider that
each FED outer cycle covers a cycle time T = ti+1− ti. The FED cycle time θn as defined in
Eq. 5 covers only a discrete set of values. In order to allow arbitrary cycle times T , we just
need to compute the minimum cycle length n with θn ≥ T and then multiply the time steps
sizes τ j by the factor q = T/θn.

In order to speed-up the computation of the nonlinear scale space, we embed the FED
scheme into a fine to coarse pyramidal approach. Notice that this approach is different than
the Cascadic FED approach proposed in [6, 7]. In these works, FED schemes were embed-
ded into a coarse to fine pyramidal decomposition. This is because in applications such as
image denoising, inpainting or variational optical flow, one is normally interested in the evo-
lution steady state t→∞. In order to reach the steady state as fast as possible, Cascadic FED
propagates the solution from coarse to fine levels. However, in our case we are interested in
obtaining a set of filtered images to build a nonlinear scale space from which we can detect
and describe features.

Once we reach the last sublevel in each octave, we downsample the image by a factor
of 2 using the smoothing mask

( 1
4 ,

1
2 ,

1
4

)
and use that downsampled image as the starting

image for the next FED cycle in the next octave. After downsamping the image, we need to
modify also the contrast parameter λ . The smoothing mask reduces the contrast of an ideal
step edge by 25%, and therefore the contrast parameter needs to be multiplied by 0.75. For
a better understanding, we summarize the pyramidal FED approach for nonlinear diffusion
filtering in Alg. 1. In the same way, the FED inner cycle iterations are described in Alg. 2.

3.2 Feature Detection

We compute the determinant of the Hessian for each of the filtered images Li in the nonlinear
scale space. The set of differential multiscale operators are normalized with respect to scale,
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using a normalized scale factor that takes into account the octave of each particular image in
the nonlinear scale space, i.e. σi,norm = σi/2oi

, and

Li
Hessian = σ

2
i,norm

(
Li

xxLi
yy−Li

xyLi
xy
)
. (11)

For computing the second order derivatives we make use of concatenated Scharr filters with
step size σi,norm. Scharr filters approximate rotation invariance better than other filters or
central differences differentiation [18]. We firstly search for maxima of the detector response
in spatial location. At each evolution level i, we check that the detector response is higher
than a pre-defined threshold and it is a maxima in a window of 3×3 pixels. This is done to
quickly discard non-maxima responses. Then, for each of the potential maxima, we check
that the response is a maxima with respect to other keypoints from level i+ 1 and i− 1,
respectively directly above and directly below in a window of size σi×σi pixels. Finally, the
2D position of the keypoint is estimated with sub-pixel accuracy by fitting a 2D quadratic
function to the determinant of the Hessian response in a 3× 3 pixels neighbourhood and
finding its maximum.

(a) LDB binary test (b) M-LDB binary test

Figure 1: LDB [20] and proposed M-LDB binary tests between grid divisions around a
keypoint, shown for the intensity and the gradients in x. M-LDB includes rotation and sub-
sampling that depends on the scale.

3.3 Feature Description
Binary descriptors (such as those used in BRIEF, ORB and BRISK) have enjoyed widespread
use lately since they can be computed and matched very efficiently. Despite this, only re-
cently insight has been gained into how these binary features actually work. Ziegler et
al. [21] showed that instead of estimating the gradients of an image as had been previ-
ously proposed, these features are a locality sensitive hashing (LSH) of the Kendall’s tau
metric. They also introduced the LUCID descriptor, an ordering of the pixels of the patch
obtained using a stable sorting algorithm. Computing the Kendall’s tau distance is however
an O(n logn) operation so they propose to use the Hamming distance over the rankings. The
results of LUCID are slightly worse than those of BRIEF, indicating that the dimensionality
reduction performed by the hashing does improve performance.

We propose a Modified-Local Difference Binary (M-LDB) that exploits gradient and in-
tensity information from the nonlinear scale space. The LDB descriptor was introduced
in [20] and follows the same principle as BRIEF, but using binary tests between the aver-
age of areas instead of single pixels for additional robustness. In addition to the intensity
values, the mean of the horizontal and vertical derivatives in the areas being compared is
used, resulting in 3 bits per comparison. LDB proposes using various grids of finer steps,
dividing the patch in 2× 2, 3× 3, 4× 4, etc. grids, as shown in Fig. 1(a). The averages of
those subdivisions are very fast to compute using integral images if the descriptor is upright
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(not rotation invariant) as in [20]. However, when considering the rotation of the keypoints
integral images can not be used, and visiting all points in a rotated subdivision can be rela-
tively expensive in computation time. Rotation invariance is obtained by estimating the main
orientation of the keypoint as in KAZE, and the grid of LDB rotated accordingly. Instead of
using the average of all pixels inside each subdivision of the grid, we subsample the grids in
steps that are a function of the scale σ of the feature. This approximation of the average per-
forms well in our experiments. The scale-dependent sampling in turn makes the descriptor
robust to changes in scale. This process is depicted in Fig. 1(b). M-LDB uses the deriva-
tives computed in the feature detection step, reducing the number of operations required to
construct the descriptor.

Given that M-LDB computes an approximation of the average of the same areas in the
intensity and gradient images, the Boolean values that result from the comparisons are not
independent of each other. Reducing the size of the descriptor by choosing a random subset
of the bits [20] or with a more elaborated method such as those used in [5, 15] is expected
to improve the results, or at the very least reduce the computational load without decreasing
performance.

4 Experimental Results
We use the VLBenchmarks evaluation from [9] to evaluate the detector repeatability in the
Oxford dataset and synthetic rotation and Gaussian noise experiments. For the latter case
we use the Iguazu dataset introduced in [2]. The VLBenchmark reimplements the proto-
col introduced in [12] for local detectors evaluation. The detector repeatability measures
to what extent do detected regions overlap exactly the same scene region by comparing de-
tected features in two images of the same scene. We consider a correspondence between two
regions when the overlap error is smaller than 40%. In addition, we also impose that the
error in relative point location for two corresponding regions has to be less than 2.5 pixels,
i.e. ‖xa−H (xb)‖< 2.5, where H is the true homography between the images. We compare
the performance of A-KAZE with respect to BRISK, ORB, SURF, SIFT and KAZE. For
BRISK, ORB, SURF and SIFT we used their OpenCV implementations, while for KAZE
we use the original library provided by the authors.

Fig. 2 depicts the detector repeatability scores for some sequences from the Oxford
dataset plus synthetic rotation and Gaussian noise transformations. For the synthetic changes
in rotation we consider the first image from the Graffiti dataset. We obtained superior de-
tection results with A-KAZE showing excellent performance in all the experiments. KAZE
repeatability scores are close to the ones obtained by A-KAZE, but the detector is several or-
ders of magnitude slower. KAZE performs nonlinear diffusion filtering and feature detection
always on the same image resolution. On the other hand, A-KAZE downsamples the image
size at each new scale speeding-up the nonlinear scale space construction and detection steps.
The reason why downsampling does not have a negative impact in the detector performance,
is because the nonlinear diffusion process mainly acts within a fairly small vicinity around
each pixel. In addition, another reason why A-KAZE obtains superior results is due to the
fact that FED schemes are more accurate than AOS schemes, and therefore the nonlinear
diffusion equation is discretized with less error in the FED case.

Regarding fast feature detectors such as ORB and BRISK we found that they undergo a
significant drop in performance when adding the pixel location error restriction, especially
in the case of BRISK. Note, that our evaluation differs from the one presented in [10] where
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(a) (b) (c)

(d) (e) (f)

Figure 2: Detector repeatability score for an overlap area error 40% and error in pixel loca-
tion of 2.5 pixels. (a) Bikes (b) Boat (c) UBC (d) Wall (e) Iguazu (f) Rotation. Best viewed
in color.

only overlap area error between features was considered. In addition, the ORB detector does
not perform non-maxima suppression between the scales, resulting in duplicate detections
within the different pyramid levels in the scale space. We think that one of the reasons
why ORB and BRISK have lower detection performance is due to the use of variants of
FAST corner detector. As found out in the evaluation of interest points presented in [1], the
behaviour of the FAST detector is unreliable for solving image matching problems under
large image transformations. For these scenarios, detectors based on the Hessian deter-
minant or Difference of Gaussians should be preferred. Table 1 shows average combined
detection and description performance results considering the Matching Score (MS) and Re-
call (RC) as described in [8]. The matching score MS = # Correct Matches/# Features,
describes the number of initial features that will result in correct matches. The recall RC =
# Correct Matches/# Correspondences, shares some similarities with the MS, although is
influenced by the detector repeatability to find correspondences [12]. We consider a nearest
neighbor distance ratio matching criteria [11] using a distance ratio value between descriptor
distances of 0.8. To determine a correct match we consider the same criteria as done in the
detector evaluation, i.e. an overlap area error of 40% and an error in pixel location of 2.5
pixels.

We also tested the impact of selecting various sizes for the descriptor in the perfor-
mance of M-LDB using a random bit selection scheme [20]. As can be observed in Ta-
ble 1, best MS and RC ratios were obtained by A-KAZE (486 bits) and KAZE in most
cases, except for the Boat dataset in which SIFT exhibits better recall. Interestingly, A-
KAZE with 256 bits obtains very similar performance compared to the full A-KAZE de-
scriptor (486 bits). The light-weight A-KAZE with 64 bits descriptor even outperforms
BRISK, ORB, SURF and SIFT in most of the scenarios. Fig. 3(a) shows the percentage
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Features Size
Bikes Boat UBC Trees Rot.

MS RC MS RC CM RC PR RC MS RC
SIFT 128 Bytes 8 69 15 62 33 53 4 29 49 74
SURF 64 Floats 27 68 11 52 53 72 7 23 43 70
ORB 256 Bits 25 67 7 17 59 78 8 34 47 82

BRISK 512 Bits 3 55 3 37 17 51 3 22 15 69
KAZE 64 Floats 37 81 16 54 74 85 18 53 67 85

A-KAZE 64 Bits 42 76 11 33 71 77 12 32 60 86
A-KAZE 256 Bits 46 85 15 44 78 85 16 45 63 91
A-KAZE 486 Bits 47 87 16 47 79 86 17 48 64 92

Table 1: Combined detector and descriptor evaluation results for the Bikes, Boat, UBC, Trees
and synthetic Rotation sequences. The highest MS and RC scores are in bold.

Precision = # Correct Matches/# Putative Matches as a function of the number of bits in
the descriptor for the Trees dataset. For sizes of 92 bits and above, the performance is within
a few percentage points of the full descriptor, and plateaus after 128 bits for small image
transformations. Fig. 3(b) depicts precision versus the number of channels considered in the
M-LDB descriptor for two image pairs from the Wall dataset. There is a considerable im-
provement in precision when considering the three channels in the descriptor (intensity and
x and y derivatives) against using only the intensity.

Finally, Fig.3(c) depicts a timing evaluation of the combined detection and description
considering 1000 features extracted from the fist image of the Graffiti dataset. This image has
a resolution of 800×640 pixels. All timing results were obtained with an Intel Core i7-3770
CPU. We consider the OpenCV implementations of BRISK, ORB, SIFT and SURF since
these implementations are highly optimized in terms of speed. In addition, we also show
timing results for the original SURF library and SIFT from the VLFeat library [16]. While
A-KAZE is more expensive to compute than BRISK and ORB, it is faster than SURF, SIFT
and KAZE. More specifically, A-KAZE is several orders of magnitude faster than KAZE
while providing similar or even better performance in some scenarios. In addition, due to
the use of binary descriptors the matching step can be computed very efficiently using the
Hamming distance. In the supplementary material, we compare A-KAZE against BRISK
and ORB in a tracking by detection scenario considering a high frame rate object tracking
sequence from [22].

(a) (b) (c)

Figure 3: Descriptor and timing evaluation. (a) Precision vs # Bits (b) Precision vs # Chan-
nels (c) Timing evaluation for the joint method (detection and description) considering 1000
features from the first image of the Graffiti dataset. Best viewed in color.
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5 Conclusions
In this paper we have introduced FED schemes for feature detection and description prob-
lems. By means of FED schemes embedded in a pyramidal approach we can reduce dramat-
ically the computational time spent on building the nonlinear scale space and feature detec-
tion. In addition, we also introduced a novel modification of the LDB descriptor that is highly
efficient and invariant to rotation and scale changes. Our A-KAZE features exhibit excellent
performance in detection and description, while having low computational and descriptors
storage requirements. The code of the A-KAZE features is implemented in C++ using some
functionalities from the OpenCV library. An open source implementation can be down-
loaded from: www.robesafe.com/personal/pablo.alcantarilla/kaze.html.
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