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Abstract— In the last years there has been a rising interest in 

monitoring driver behaviors by using smartphones, due to their 

increasing market penetration.  Inertial sensors embedded in 

these devices are key to carry out this task. Most of the state-of-

the-art apps use fix thresholds to detect driving events from the 

inertial sensors. However, sensors output values can differ 

depending on many parameters. In this paper we present an 

Adaptive Fuzzy Classifier to identify sudden driving events 

(acceleration, steering, braking) and road bumps from the 

inertial and GPS sensors. An on-line calibration method is 

proposed to adjust the decision thresholds of the Membership 

Functions (MFs) to the specific phone pose and vehicle dynamics. 

To validate our method, we use the UAH-Driveset database [1], 

which includes more than 500 minutes of naturalistic driving, 

and we compare results with our previous DriveSafe [2] app 

version, based on fix thresholds. Results show a notable 

improvement in the events detection regarding our previous 

version. 

I. INTRODUCTION 

In the last years, there has been an increasing interest in 

utilizing smartphones as distributed sensing platforms because 

they have a great amount of embedded sensors that facilitates 

the cost-effective capturing and processing of data from the 

real world. In addition, they are small, cheap, and ubiquitous. 

On the other hand, profiling driving behavior has become a 

relevant aspect in fleet management, automotive insurance and 

eco-driving. 

Inertial sensors are a good option to monitor driver behavior 

[3]. A review about publications and commercial applications 

toward developing systems that make driving safer confirms 

this hypothesis [4]. The premise of many of these approaches 

is that providing feedback of recorded driving actions to 

drivers, they are encouraged to change their behavior and 

reduce their individual risk. In addition, these works propose 

solutions for diver problems as: driver assistance [5], 

drowsiness detection [6], eco-driving [7], fleet management 

[8], road condition monitoring [9], accident detection [10] and 

insurance information (Pay-As-You-Drive) [11][12] among 

others. 

Using smartphones inertial sensors to detect driving events 
and maneuvers, in a general way, have to overcome some 
important issues: 1) Diversity of the inertial sensors (measures 
and noise level can differ among different devices). 2) 
Smartphone pose (position inside the vehicle can be different 
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for each user in each trip). 3) Vehicle dynamics (parameters 
involve the vehicle dynamics are different among vehicles and 
can change over the time. 

Most of the state-of-the-art proposals for detecting 

acceleration, braking or steering events from inertial sensors 

are based on fix thresholds [13][14]. In the previous version of 

DriveSafe [2], used as baseline in this work, these events are 

triggered when the sensing values overpasses some predefined 

thresholds (e.g. 0.1 g for acceleration, braking and steering) set 

empirically. Only a few applications propose calibration 

techniques to adjust the thresholds for events detection. In 

[15], a Support Vector Machine (SVM) method is used to 

recognize driving events and the results of applying a 

Gaussian Radial Basis Function (RBF) kernel as opposed to 

K-Mean clustering are evaluated. The achieved optimal 

recognition rate was 60%, and it was observed that 

acceleration event data did not meet expectations. SenseFleet 

includes a calibration phase consisting in the collection of a 

fixed number of input samples segmented by speed ranges 

and the computation of their cumulative distribution function 

[16], but this is a priori calibration phase, it takes around 17 

minutes long, and is not adaptive. If the vehicle dynamic 

parameters or the phone pose changes during the trip, the 

thresholds are not updated, which can compromise the correct 

events detection. In addition, the extra time needed to perform 

this calibration process makes drivers perceive these systems 

as tedious and complex. 

 To overcome all these limitations, we propose an Adaptive 
Fuzzy Classifier where the decision thresholds of the MFs 
bellowing to the inertial sensor inputs are adjusting in an on-
line calibration process. Measures collected in some trip 
sections (constant turns, uniform acceleration maneuvers) are 
cumulated to obtain its cumulative distribution function in 
different ranges. Thresholds are adjusting in order to fit the real 
and the theoretical distributions during the trip.   

II. DRIVESAFE AND UAH-DRIVESET 

DriveSafe [2] is a smartphone app that collects driving 
manoeuvers data to evaluate and profile driver behaviors. 
During driving, it assists the driver to improve his safety. At 
the end of each trip, it scores driving and records information 
trip in order the driver analyzes his skills and how to improve 
them. DriveSafe is strictly not designed to replace any onboard 
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vehicle control system nor assistant system. Its goal is alert and 
assess driving behaviors to encourage safe driving. 

In order to investigate the most suitable techniques to 
calibrate sensors for detecting driving events, a large and 
heterogeneous database which provides naturalistic driving 
data is required. A database that fulfills these requirements is 
UAH-DriveSet [1]. No less important than having access to a 
proper database is to have a tool to exploit the information 
contained in it. 

This dataset has been recorded using the application 
DriveSafe. The app uses all the available sensors on the 
smartphone, such as accelerometers, GPS and the frontal 
camera, to analyze driving parameters and behaviors. 

DriveSet Reader is a tool available with DriveSet. This tool 
allows to select each of the routes in order to simultaneously 
reproduce the associated video and plot a selection of variables 
synced in real-time within a user interface. We use this tool to 
find patterns in the driving behaviors by reviewing all the 
available variables in the dataset together with the videos that 
show what actually happened during the trips, thus facilitating 
analysis of the available variables in the database. 

III. ADAPTIVE FUZZY CLASSIFIER PROPOSAL 

In this section, we describe our Fuzzy Classifier designed 
to detect driving events and the calibration process carried out 
to adjust its decision thresholds. As shown in Fig.2 the event 
detector uses as inputs the inertial sensors and GPS sensor. 
Acceleration, steering and braking indicators are detected by 
using Fuzzy Logic. In addition a new indicator related with the 
bumps detection is added.  

 

Fig. 1. Scheme forces 

A. Vehicle dynamics foundations  

When the driver performs some maneuvers related to the 
indicators under study, the vehicle is put under forces that 
modify its dynamic [17], as it is shown in Fig.1. When the 
brakes are activated the vehicle decelerate. If the accelerator is 
pressed the vehicle increases its speed. When the vehicle is 
performing a curve, launched by a steering maneuver, the 
faster we go the higher will be centrifugal force over it. When 
the vehicles pass through a bump or an area with irregularities 
in the asphalt, some abrupt peaks appear in the accelerometers, 
especially in the vertical axis. 

Some parameters involve in the vehicle dynamic can change 

over the time (i.e. the pressure of the tires, the vehicle weight, 

the ability to dissipate energy from the brakes). In 

consequence the energy that our vehicle is able to absorb is 

changing. 

B. Fuzzy classifier 

To detect inertial events we use a zero-order Sugeno Fuzzy 
Inference System (FIS) as classifier due its computational 
efficiency. The input variables of our FIS are shown in Fig. 2: 

- Linear velocity (𝑣𝐿) is obtained from the GPS and is given 
in kilometers per hour. It is used to: 1) Avoid the detection of 
false steering events on curve sections. 2) Disable the detection 
of events when the speed is lower than 14 kilometers per hour. 
3) Classifier the level of steering events. 

- Acceleration in “Z” axis (𝑎𝑧) is obtained from the inertial 
sensor (accelerometer), and measures the longitudinal 
acceleration in the vehicle progress direction. A sudden 
positive increase in Z indicates an acceleration, where abrupt 
peaks may indicate aggressive increases of velocity. A 
decrease in the same accelerometer represents a sudden 
deceleration, which may be an indicative of harsh braking. The 
samples are normalized by the gravity. 

- Absolute acceleration value in “Y” axis (|𝑎𝑦|) is obtained 

from the inertial sensor (accelerometer) and it evaluates the 

behavior of the vehicle in the curves because a high increase 

or decrease in Y axis are indicatives of excessive velocity in 

left or right turns, provoking a sharp turn. The samples are 

normalized by gravity. 

-Axis with the higher acceleration value (|𝐴𝑋𝐼𝑆|) is 

calculated from motion sensors (accelerometers), to avoid 

false events detections. Also is essential to detect bumps and 

irregularities in the asphalt. When the vehicle pass through a 

bump, some abrupt peaks appear in all accelerometer axis. 

These samples are “0” when the dominant acceleration is in Z 

or Y axis, or take the acceleration absolute value in X axis, 

when this is the dominant. 

- Absolute value of Angular velocity (|ω|) is calculated 

from the gyroscope sensor (yaw). It is used to avoid false 

detections of sharp turns in curves. The samples are given in 

degrees per second. 

The input variables are obtained at different sampling rates. 
In the case of inertial sensors, the sampling rate provided by 
the dataset is 10 Hz and the GPS frequency is 1 Hz. We 
implemented a Sensor Fusion layer to synchronize inertial and 
GPS samples (Fig. 2). As GPS samples are received at 1 Hz, 
we consider constant speed until the next sample and we use 
this speed to detect events each 0.1 seconds in the next second.  

The MFs of the fuzzy sets defined for the inputs are shown 
in Fig. 3.  

For the |𝑎𝑦| input we define 4 trapezoidal MFs named as 

VLY, LY, MY and HY (Fig. 3.a). The decision thresholds for 
this input are ThY1, ThY2 and ThY3. The default value for them 
are 0.1g, 0.2g and 0.4g, obtained in a heuristic way and they 
are adjusted in a calibration process. 

For the 𝑎𝑧 input we define 7 trapezoidal MFs named as NH, 
NM, NL, Zero, PL, PM and PH (Fig. 3.b). The decision 
thresholds for this input are ThZ1, ThZ2, ThZ3, ThZ4, ThZ5 and 



  

ThZ6. The default value for they are -0.4g, -0.2g, -0.1g, 0.1g, 
0.2g and 0.4g, obtained in a heuristic way and they are adjusted 
in a calibration process. 

For the 𝑣𝐿 input we define 4 trapezoidal MFs and 3 fix 
thresholds due to its samples are obtained from GPS (Fig. 3.c).  

For the AXIS input we define 2 trapezoidal MF´s named 
NoX and X (to detect bumps and avoid false detections) (Fig. 
3.d). We define only a fix threshold to optimize the general 
working. 

For the |ω| input we define 5 trapezoidal MFs named VL, 

L, MHV, MMV and H (Fig. 3.e). The decision thresholds are 

fix due the yaw gives an absolute angular value with high 

precision. The default values are 1.2º/s, 5.3º/s, 6.8º/s and 

8.5º/s, obtained in a heuristic way.  

TABLE I.  OUTPUT VALUESOF FUZZY CLASSIFIER  

Outputs MF´s 

Steering NoSt, High, Medium, Low 

Braking & 
Acceleration 

A_Low, A_Medium, A_High, No_Event, B_Low, 
B_Medium, B_High 

Bumps Yes, No 

 

For the output variables, we select crisp set for each MF to 

allow a defuzzification based on weighted sums. The output 

MFs are shown in table I. 

Fuzzy rules design is a straightforward way of knowledge 

that is subjective and ambiguous. Given the large number of 

member functions that we have, a complete fuzzy rules set is 

not optimum. A reduced number of 28 rules have been 

designed in an experimental way where each rule indicates a 

specific conditions for each event detection. For example, in 

order to detect a “low braking” event, the classifier applies the 

following rule: 

The detection of steering events are controlled by the rules 

indicated in the table II. 

TABLE II.  RULES SET FOR A STEERING EVENTS DETECTION  

                                                             Angular velocity 

 MFs VL L MHV MMV H 

 Linear 

Velocity 

VLV  
No
St 

NoSt NoSt NoSt NoSt 

LV  
No
St 

High/ 
Medium 

/Low * 

High/ 
Medium 

/Low * 

High/ 
Medium 

/Low * 
NoSt 

MV 
No

St 

High/ 

Medium 

/Low * 

High/ 

Medium 

/Low * 

NoSt NoSt 

HV  
No

St 

High/ 

Medium 

/Low * 
NoSt NoSt NoSt 

  *The specific activated MF is defined by the 𝑎𝑧 input 
 

When a new threshold is proposed by the calibration process 

for an input of our fuzzy classifier, this is sent to the update 

process in order to adjust the involved MFs (Fig.2), changing 

their shape.  

C. Calibration of accelerometer Y  

The 𝑎𝑦 input is used together with |ω|, 𝑣𝐿 and AXIS inputs 

to determine the sharp level of the turns. We have to calibrate 

three decision thresholds (ThY1, ThY2, ThY3) for this inertial 

sensor.  

 

Fig. 2. Calibration method of fuzzy classifier architecture 

IF (AcelY IS NL) AND (Axis IS NoX) AND (Linear 

Velocity IS NOT VLV) THEN (event IS B_Low) 
 

 



  

A rigorous method to calibrate the inertial sensor consist on 

the vehicle performs a series of sharp turns to obtain some 

master patterns to adjust the thresholds. However, these 

maneuvers carries great risk and are carried out in a previous 

setup [16]. We choose a different approach based on an online 

calibration method over sections of curve where the 

centrifugal forces (see Fig. 4) are similar to those suffered in 

the sudden turns but with lower range values and performing 

safer manoeuvers. We studied the trips of the UAH-Driveset 

[1], taking only data in curves to find out correlations between 

𝑎𝑦, |ω| and 𝑣𝐿. The 𝑎𝑦 gives the acceleration experienced by 

the driver in the vehicle in this axis, although this acceleration 

value does not match the value that suffer a solid-rigid to 

make the same trajectory (𝑎𝑦
𝑇ℎ𝑒𝑜) as the current vehicles are 

provided with energy absorbing systems (𝑎𝑦
𝐴𝑏𝑠). 

 

 
Fig.4. Centrifugal force in curve sections 

 𝑎𝑦
𝑇ℎ𝑒𝑜 = 𝑎𝑦 + 𝑎𝑦

𝐴𝑏𝑠 →  𝑎𝑦 =  𝑎𝑦
𝑇ℎ𝑒𝑜 − 𝑎𝑦

𝐴𝑏𝑠 

For calibration we choose those curve sections where we 
detect continuous course change in the same direction of at 
least 45⁰ without any event (Fig.2). We calculate the angular 
velocity (ω) from the gyroscope (yaw) and the linear velocity 

from GPS in these sections (2). Then, 𝑎𝑦
𝑇ℎ𝑒𝑜 is calculated as 

the product of ω and 𝑣𝐿 (3). 

 
Δ𝑦𝑎𝑤

Δ𝑡𝑖𝑚𝑒
 

 𝑎𝑦
𝑇ℎ𝑒𝑜= 𝑣𝐿 ∙  

 

 

Fig. 5 Evolution of ThY1 for each vehicle 

 Our calibration method consist on estimating the decision 

thresholds taking 𝑎𝑦 samples in the moments when 𝑎𝑦
𝑇ℎ𝑒𝑜 falls 

within a specific range for each threshold (Fig. 2). To do that, 

a study with a master vehicle to decide which ay values 

determine the level of the sharp turns was made. In this way, 
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Fig. 3. Membership functions defined for the inputs 
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we correlate values given by the accelerometers with the 

theoretically calculated. After finding the theoretical 

acceleration ranges, these can be used in the calibration of 

other vehicles and thus their decision thresholds will be 

adjusted regarding the master vehicle. Among all vehicles 

available in the database (UAH-DriveSet), the Audi Q5 was 

selected to be the master vehicle. The range of theoretical 

acceleration (𝑎𝑦
𝑇ℎ𝑒𝑜) for ThY1 was [0.12g - 0.14g]. Extending 

this analysis to other vehicles, we show the adapted values of 

the decision thresholds for each vehicle in table III. 

As we mentioned before, the vehicle weight, width and tire 

pressure determine the vehicle behaviour in curves. The wider 

the tire are the higher the surface friction is and as 

consequence the higher energy absorption will be (centrifugal 

acceleration). 

The energy is absorbed by the damping system which 

increases with the mass of the vehicle. Heavy vehicles absorb 

more energy than light vehicles. Energy not absorbed by the 

damping system makes the vehicle suffers a great centripetal 

acceleration.  

If the pressure of the tires is low, the vehicle will lose grip 

and its control can be compromised. If the tires are over 

pressured, they will not absorb uneven ground properly. With 

a correct tires pressure we have maximum tire surface in 

contact with the ground, and also supporting the same effort 

over the whole surface.  

Figure 5 shows the evolution of ThY1 for each vehicle on a 

trip around 16 Km long. Initially the threshold is 0.1g and 

according to the acquired samples the threshold is adapted to 

vehicle conditions. The calibration method takes only few 

seconds if the acceleration conditions are met (curve sections 

in roundabouts, in roads input and exits, etc). 

Opel Astra and Citroen C4 have similar performance and 

they converge to a similar threshold (0.08g). However, in the 

Mercedes B-180, despite having the same width tires, it has 

more mass and then the threshold is higher (0.091g). Despite 

Kia Picanto has lower performance than the Mercedes, it 

presents lower threshold because it has lower weight. The 

Audi Q5 was selected as master car and its threshold is 

0.094g, greater than Mercedes, because it has more mass and 

it has the highest centre of gravity. Finally, the Citroën C0 

(electric car) is heavy in relation to the width of its tires in 

comparison with the other vehicles of the database, thus the 

threshold get 0.117g. 

TABLE III.  CALIBRATED VALUES FOR THE Y ACCELEROMETER 

THRESHOLDS IN EACH VEHICLE  

D.  Calibration of accelerometer Z  

The 𝑎𝑧 is used together with 𝑣𝐿 and AXIS inputs to detect 

acceleration and breaking indicators. We have to calibrate six 

decision thresholds (ThZ1, ThZ2, ThZ3, ThZ4, ThZ5, ThZ6) for this 

inertial sensor. Extending to Z axis the calibration method for 

the accelerometer in Y axis, we perform the calibration of the 

accelerometer Z on straight sections of the road where the 

vehicle is only affected by longitudinal forces. 

The foundation of our calibration method for this sensor is 

based on uniform acceleration. The GPS gives the linear 

velocity of the vehicle each second. This frequency is 

sufficient to consider that the acceleration is constant, so the 

second derivative of the position of the vehicle is then 

constant:  

  𝑎𝑧
𝑇ℎ𝑒𝑜 =

𝑉𝑡−𝑉𝑡−1

𝑡−1
 

  𝑎𝑧 =  𝑎𝑧
𝑇ℎ𝑒𝑜 −  𝑎𝑧

𝐴𝑏𝑠 

 The calibration method is based on estimating the decision 

thresholds taking 𝑎𝑧 samples in the moments when 𝑎𝑧
𝑇ℎ𝑒𝑜 falls 

within a specific range for each threshold. A study with a 

master vehicle was carried out to decide the values 𝑎𝑧 that 

determine the intensity degree for the sudden acceleration or 

braking events. We have correlated acceleration given by the 

accelerometer and the theoretically calculated. After finding 

the theoretical acceleration ranges, these are used in the 

calibration of other vehicles, being able to adjust their 

thresholds decision regarding the master vehicle. Audi Q5 

was selected to be the master vehicle. The range of theoretical 

acceleration for ThZ3 is [-0.11g -0.14g] and for ThZ4 is [0.115g  

0.145g]. Extending this analysis to other vehicles, we show 

the adapted values of the decision thresholds for each vehicle 

in table IV. 

  The method to calibrate (ThZ1, ThZ2, ThZ5, ThZ6) is similar 

although it should be noted that the range values for these 

theoretical acceleration thresholds is higher and we get fewer 

samples unless driver performs aggressive accelerations and 

braking. To solve this problem we estimate these thresholds 

as a function of the first ones (ThZ3, ThZ4) due to the linearity 

among the calibrated values, as it can be observed in table IV. 

Calibration of these thresholds are not as relevant as already 

mentioned because these events occasionally occur. 

TABLE IV.   CALIBRATED VALUES FOR  Z ACCELEROMETER 

THRESHOLDS  IN EACH VEHICLE  

 *NES= No enough samples 

 

IV. EXPERIMENTAL RESULTS 

 We perform experimental evaluation of our proposal 

comparing events detected between our previous DriveSafe 

version (based on fix thresholds) and the improved one (based 

on fuzzy classification and adaptive decision thresholds) over 

the sequences recorded in the UAH-Driveset database [1], 

which includes 18 trips performing by 6 different drivers and 

Threshold Adapted threshold  

Initial value 
Range values 

for calibration 

Opel 

Astra 

Citroën 

C0 

Audi 

Q5  

Mercedes 
B180 

ThY1 0.1 g [0.12g  0.14g] 0.08 0.117 0.094 0.091 

ThY2 0.2 g [0.21 g  0.25 g] 0.165 0.21 0.169 0.155 

ThY3 0.4 g [0.4 g  0.5 g] 0.313 0.38 0.315 0.34  

Threshold Adapted Threshold  

Initial value 
Range values for 

calibration 

Opel 

Astra 

Citroën 

C0 

Audi 

Q5 

ThZ1 -0.4g  [-0.4g -0.5g] -0.36 NES NES 

ThZ2 -0.2g [-0.22g  -0.26 g] -0.18 -0.185 -0.165 

ThZ3 -0.1g  [-0.115g  -0.145g] -0.104 -0.110 -0.096 

ThZ4 0.1g   [0.115g  0.145g] 0.088 0.112 0.088 

ThZ5 0.2g  [0.22g   0.26 g] 0.157 0.196 0.16 

ThZ6 0.4g  [0.4 g   0.5g)] NES NES NES 



  

vehicles.  In order to measure the accuracy of the events, we 

use precision (PR) and recall (RC) performance indicators. 

TABLE V.  COMPARATIVE OF DETECTED EVENTS  

 

The results obtained in the Table V for Total Precision in 

the revised version improves between 14% and 30% 

regarding the previous one. Total Recall improves between 

23% and 30% depending on the events.  Using the last version 

the number of false detections is significantly reduced and the 

number of real detections is considerably incremented.   

We apply a similar method to evaluate the bumps detection 

obtained in Table VI. 

TABLE VI.  BUMPS DETECTED IN EACH VEHICLE 

 

 

 

 

V. CONCLUSIONS AND FUTURE WORKS 

Experimental results show that our online calibration 

method based on adjusting our fuzzy classifier decision 

thresholds using data obtained in certain route sections 

(concentrated turns and uniform accelerations) performs 

better than our previous version based on fix thresholds. 

The previous Drivesafe version only worked for velocities 

higher than 50 km/h. This version detect events at velocities 

lower than this threshold. At low velocities fuzzy classifier 

works quite better than using fix threshold.  

When the vehicle speed is over 80 km/h, a small bump 

causes acceleration changes in all the axis (x, y, z). The new 

fuzzy classifier only detect sudden braking/acceleration or 

steering events when the |𝑎𝑍| or the 𝑎y is the highest. This 

control condition saves a lot of false detections. 

A new functionality as the detection of bumps 

or irregularities of the asphalt, has been included. 

Using this data we can identify the type of the road and adjust 

the detection thresholds if the quality of the road changes.  

For future work, we intend to design a high level layer in 

order to find out new events (overtaking attempts, abrupt gear 

shifts or sudden swerves) performed by drivers, which are 

also interesting to evaluate the driving behaviour.  
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Vehicle 
Events by Improved DriveSafe  

Acceleration Braking Steering  

PR RC PR RC PR RC 

Audi Q5 0.94 0.76 0.87 0.93 0.88 0.92 

Mercedes B180 0.71 0.81 0.87 0.97 0.89 0.91 

Citroën C4 0.85 0.87 0.83 0.94 0.89 0.92 

Kia Picanto 0.89 0.87 0.86 0.84 0.9 0.93 

Opel Astra 0.82 0.85 0.89 0.97 0.9 0.9 

Citroën C0 0.72 0.88 0.84 1 0.87 0.91 

TOTAL 0.81 0.85 0.86 0.94 0.89 0.91 

Vehicle 
Bumps 

Precision Recall 

Audi Q5 0.98 0.8 

Mercedes B180 0.93 0.96 

Citroën C4 0.94 0.93 

Kia Picanto 0.86 1 

Opel Astra 0.98 0.85 

Citroën C0 0.77 1 

TOTAL 0.87 0.91 

Vehicle 
Events by DriveSafe 

Acceleration Braking Steering  

PR RC PR RC PR RC 

Audi Q5 0 0 0.86 0.73 0.9 0.76 

Mercedes B180 0.69 0.67 0.56 0.67 0.86 0.72 

Citroën C4 0.74 0.55 0.72 0.74 1 0.44 

Kia Picanto 0.79 0.64 1 0.36 0.97 0.66 

Opel Astra 0.83 0.72 0.76 0.78 0.88 0.69 

Citroën C0 0.54 0.8 0.62 0.97 0.19 1 

TOTAL 0.67 0.59 0.71 0.71 0.59 0.69 

 

http://www.robesafe.uah.es/personal/eduardo.romera/uah-driveset/
http://www.mobileye.com/en/manufacturerroducts/applications/
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