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Abstract— This paper presents a real-time approach to detect
and localize surrounding vehicles in urban driving scenes. We
propose a multimodal fusion framework that processes both
3D LIDAR point cloud and RGB image to obtain robust
vehicle position and size in a Bird’s Eye View (BEV). Semantic
segmentation from RGB images is obtained using our effi-
cient Convolutional Neural Network (CNN) architecture called
ERFNet. Our proposal takes advantage of accurate depth infor-
mation provided by LIDAR and detailed semantic information
processed from a camera. The method has been tested using the
KITTI object detection benchmark. Experiments show that our
approach outperforms or is on par with other state-of-the-art
proposals but our CNN was trained in another dataset, showing
a good generalization capability to any domain, a key point for
autonomous driving.

I. INTRODUCTION

Perception in dynamic environment plays a pivotal role
to autonomous driving. 3D object detection and localization
has become an increasing research topic because it supposes
an important challenge for vehicles, pedestrians and cyclists
recognition on roads. This data can be used to generate
objects’ trajectories and to predict their motion. Based on
this information, different high-level driving behaviors can be
implemented, such as: avoiding collision, overtaking others
vehicles, stopping on crosswalks, etc. Nowadays, modern
self-driving vehicles are equipped with multiple and high-
precision sensors such as cameras and LIDAR.

LIDAR-based detection methods measure the distances
to several points in the surroundings and create 3D point
clouds [1]. They have the advantage of getting accurate
depth information and obtaining robust results in location,
independently of the environment lighting conditions. Their
main drawbacks are sparsity of data, their price and their
integration in commercial vehicles, where body car aesthetic
plays an important role. On the other hand, camera-based
methods provide much more detailed semantic information
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[2]. However, their performance degrade in scenes with
difficult lighting conditions (sun-rise, night-time, etc.) and
with the distance. On the other hand, further processing steps
are required to obtain objects’ ground positions (projection
of detection results from images to ground). LIDAR and
cameras should be used complementary to achieve higher
performance and safety systems that compensate drawbacks
in one modality [3].

In recent years, Convolutional Neural Networks (CNN)
have achieved great success in object detection and recog-
nition tasks achieving the top ranked results on public
benchmarks as KITTI [4]. Most of them are focused on 2D
detection and recognition in images [5] [6]. Some proposals
tackle the 3D object detection in images doing 2D detection
and 3D pose estimation [7] [8]. Some few approaches use
3D [9] or 2D [3] object detection in point cloud and the last
approaches exploit multiple modalities of data [3] [10]. All
of these supervised proposals present results based on KITTI
dataset splitting data between training and validation set.

This paper presents a method to fuse 3D LIDAR point
cloud with image semantic segmentation, obtained through
a RGB-based CNN, to detect vehicles in images and localize
them in a Bird’s Eye View (BEV) point cloud projection. Our
goal is to take advantage of the complementarity of these
two sensors to achieve a high-precision and robust 3D object
detection and location that permits driver-less navigation in
urban environments. We propose an architecture that obtains
semantic information from RGB images through a CNN,
and projects it over a 3D point cloud, obtained from a
LIDAR, reaching a coloring point cloud segmentation. The
proposed CNN has been designed to get robust segmentation
in unseen domains and to maximize its performance for real-
time operation. Information from the two sensors are fused
to detect 3D vehicle models (pose and size) in a BEV.

We have tested our proposal on the KITTI object detection
benchmark [4]. Results are evaluated based on the average
precision (AP) of the vehicles detection on the images as
well as their localization accuracy on the ground plane.
Experiments show that our proposal outperforms or is on par
with other state-of-the-art results in terms of AP but using a
CNN trained in another dataset, showing the generalization
capability of our method, a key point for real autonomous
navigation applications. Besides, we have studied pose and
size errors of the detected vehicles showing that our estima-
tions are good enough for autonomous driving.



II. RELATED WORKS

This section briefly reviews most important works of the
literature on object detection using LIDAR point cloud,
image and fusion of them.

A. LIDAR-based Object Detection

Most existing methods encode 3D point cloud with voxel
grid representation and use feature detectors for classifi-
cation. Rusu et al. in [11] developed the Point Feature
Histograms (PFH) and Viewpoint Feature Histograms (VFH)
that use the geometrical structure of neighboring points to
compute the features and obtain a descriptor. Some works
use SVM classifiers on 3D clusters encoded with geometry
features, such as Vote3D [12]. In [13] authors investigate
volumetric and multi-view representation for 3D object clas-
sification. Recently, some works propose to improve feature
representation by using 3D convolutional networks [9] [14].
In VeloFCN [15] point cloud is projected to the front view,
a convolutional network is applied on the 2D point map and
3D boxes are predicted from the convolutional feature map.

Most commonly used methods discretize point clouds
into a 3D grid. Since the detection is performed in 3D
space directly, object size variations are limited to real size
variation of the objects, and positions of the detected objects
can be obtained directly. However, the point density may
vary as a function of the distance and classifiers must work
with both dense and sparse data [3]. In practice, classifiers
usually work well in short-distance (dense data) and hardly
work properly in long-distance (sparse data). Our proposal
incorporates semantic information to the point cloud to
improve 3D classification specially at long-distance.

B. Image-based Object Detection

Most of these approaches employ detectors to do 2D
detection and then do 3D pose estimation. Some of them
use monocular images to generate 3D object proposals [7]
and others use stereo images for accurate objects detection
[16]. Hough Transform and 3D SURF have also been used
for robust 3D classification [17]. 3DVP [18] introduces ACF
detectors to estimate 3D voxels and 3DOP [8] reconstructs a
depth image from stereo images and uses energy minimiza-
tion to generate 3D proposals.

In the last years, CNN-based object detection has played
an important role in image classification. Most popular
methods use Fast R-CNN [19] for vehicle detection, which
has a two stage detection framework. In the first stage,
some region proposals that are likely to contain objects are
generated. In the second stage, the CNN is applied on the
region proposals to classify the object and refine its locations.
In 3DOP method the 3D box proposals are fed to an R-
CNN pipeline for vehicle recognition. Mono3D [7] shares
the same pipeline with 3DOP but it generates 3D proposals
from monocular images.

The main drawback of these methods is that they usually
rely on accurate depth estimation but, in practice, camera
models are not so accurate. Our proposal incorporates LI-
DAR point cloud to improve 3D localization.

C. Multimodal fusion

Only a few works exploit multimodal fusion in the context
of vehicle detection. However, the fusion of multiple data
can provide complementary information and increase the
accuracy of the decision making process in autonomous
driving [20]. The most common fusion strategy consists of
merging both LIDAR and images. [21] describes a frame-
work for multimodal information fusion for urban scene
understanding.

Recently, multi-view networks have been proposed for 3D
object detection in the field of autonomous driving. [22]
presents a multi-modal sensor registration for vehicle percep-
tion via deep neural networks and [23] describes a vehicle
detection system based on LIDAR and camera fusion. [20]
introduces a Multi-View object detection network (MV3D)
that takes both LIDAR point cloud and RGB image as input
and predicts oriented 3D bounding boxes.

Our work is based on a multimodal fusion but differs
from previous works in the applied fusion method, because it
incorporates visual semantic information to 3D LIDAR point
cloud and use a double 2D/3D validation check to improve
3D vehicle detection.

III. ARCHITECTURE FOR VEHICLE DETECTION

We propose an architecture based on a multimodal fusion
from two complement sensors as are a 3D LIDAR point
cloud and a RGB image. Semantic segmentation is obtained
from the RGB image using a CNN developed by the authors
(ERFNet) [24]. Through the labeling of categories of the
image at the pixel-level, the minimum rectangle hulls of
the vehicle blobs (blue color) in the segmented image are
taken as the 2D bounding boxes proposals. On the other
hand, 2D semantic information is projected in the 3D LIDAR
point cloud obtaining a 3D colored cloud. Based on the
3D semantic point cloud, 3D bounding boxes proposals are
done applying clustering. These proposals are projected in
the front view for easy merging. Proposals from the image
and from the LIDAR are fused obtaining validated 2D boxes
for vehicles in the image. These boxes are projected back in
the 3D ground plane and are seen in the BEV. Fig.1 shows
an overview diagram of the explained architecture.

A. 2D Vehicle Detection from RGB Images

Differently to most of the approaches of the state of the art,
we base our 2D vehicle detection in semantic segmentation
obtained from the RGB image using our Efficient Residual
Factorized ConvNet for Real-time Semantic Segmentation
(ERFNet) and a complete data augmentation strategy. This
is a deep architecture able to run in real-time while providing
accurate semantic segmentation. The core of our architecture
is a novel layer that uses residual connections and factorized
convolutions in order to remain efficient while retaining
remarkable accuracy [24]. We use this approach for two main
reasons. The first one is that semantic segmentation provides
a global understanding of the traffic scene and can be used
to add semantic information to the LIDAR point cloud and
to detect main objects in the scene (vehicles in our case) in



Fig. 1: Overview diagram of our architecture proposal for vehicle detection and localization.

a direct way. The second one is that our goal is to achieve
robustness in any domain. This is the reason because our
ERFNet is trained on Cityscapes [25] with 19 classes instead
of being trained in the own training set of KITTI. Fig.1 shows
our semantic segmentation where cars are detected in dark
blue, pedestrians in red, road in magenta, sky in light blue,
etc.

Since our CNN provides semantic segmentation of the
image at the pixel-level, it is easy to detect different objects
in the scene by using color codification and connectivity of
the pixels. Imposing some geometric restrictions about size
and form, the minimum rectangle hulls of the vehicle blobs
(blue color) in the segmented image are taken as the 2D
bounding boxes proposals. Some results can be seen in Fig.1.

On the other hand, 2D semantic information is related to
3D LIDAR coordinates according to the intrinsic calibration
parameters of the camera (P), and the translation (T) and
rotation (R) matrices of the camera with respect to the 3D
LIDAR position. In this way it is possible to estimate the
3D position of a pixel in the world coordinates (x3D) from
its projection in the image in pixels (x2D) and the opposite
through equations 1 and 2.

x3D = (RT )−1P−1x2D (1)

x2D = PRT x3D (2)

B. 3D Vehicle Detection from the LIDAR point cloud

Taken the semantic information obtained by the CNN
(RGB) and the LIDAR point cloud (PointXYZ) it is possible
to obtain a 3D colored point cloud (PointXYZRGB) where
different objects in the scene are classified by color (see
Fig.1). To do that, 3D point cloud is projected to 2D
semantic image applying equation 2. In this way, each point
of the point cloud is colored according to the color of
the object class on which it is projected. When semantic
information has been added to the point cloud, we proceed
with classification stage.

Classification is carried out by color filtering because
points with the same color belong to the same class. How-
ever, there can be some cases where different objects of
a class are connected (see cars in Fig.1) and additional
processing is necessary to detect them in a separate way.
A clustering of the 3D point cloud positions with the same
color allows to detect the different objects in the scene for
each class. Our clustering algorithm is based on euclidean
distance and was proposed by [26]. This algorithm uses a
Kd-tree structure for finding the nearest neighbors. We have
modified this algorithm to take into account the difference
between horizontal and vertical angular resolution in LIDAR
data. This difference is very important, especially when the
distance is large. Our algorithm adapts euclidean resolution
as a function of the object distance and the vertical scan.

Once the different objects have been detected, we assign
a geometric model to each of them. We opted to fit each
cluster into the 3D bounding box that best suits the shape of
the cluster. Length of the boxes are discretized to 5 different
values and height is fixed to 1.6m. This method presented
many problems due to bad observations and occlusions:
shadows caused by other obstacles or by itself, occlusions
of the rear part of the vehicles by the front parts, etc.,
producing errors mainly in the orientation of the boxes. In
order to improve our object estimation pose (position and
orientation), we project orthogonally the 3D point cloud
to the 2D ground plane (z=0) and fit a 2D box to each
object. For the points inside the box we apply the Hough
Transform to get the main directions of the projected points
that correspond with the correct orientation of the box. After
that, the 3D bounding box is fit with this orientation angle.
Resulting 3D box proposals can be seen in Fig.1.

C. Fusion from LIDAR and Image proposals

Once the vehicles have been detected separately in 2D and
3D through the 2D and 3D box proposals, they are merged



TABLE I: 3D localization performance: Average Precision (AP) in % of 3D boxes on KITTI validation set

Method Method IoU=0.5 IoU=0.7
Easy Moderate Hard Easy Moderate Hard

Mono3D [7] Mono 30.5 22.39 19.16 5.22 5.19 4.13
3DOP [8] Stereo 55.04 41.25 34.55 12.63 9.49 7.59

VeloFCN [15] LIDAR 79.68 63.82 62.80 40.14 32.08 30.47
MV3D [20] LIDAR+mono 96.52 89.56 88.94 86.55 78.10 76.67

Ours LIDAR+mono 79.77 65.76 63.14 57.24 43.08 39.00

to validate common detections and to complement detections
carried out only for one of the sensors. The idea is to use
complementarity of the two sensors to improve detection. To
fuse data in a correct way, 3D box proposals are projected
to the image plane obtaining some red boxes (see Fig.1) that
can be easily matched with the red boxes obtained from the
semantic image. If a proposal overlaps in the two domains
and follows some geometric restrictions, it is validated and
the LIDAR box is passed to the output image as a detected
vehicle. On the other hand, if a proposal appears only in
one domain it is validated depending of the sensor and the
distance where it was found.

Vehicle detection with point cloud works quite well and
with high precision for objects located at short distance
(< 50m). For long distance, LIDAR data is very sparse and
object detection is very difficult. In addition, to strengthen
detection a minimum threshold size of 10 colored points
were included. Long distance gap is covered by our semantic
proposals, which can easily detect vehicles at long distance
(> 50m) although localization precision quadratically de-
creases with this parameter. Finally, validated 2D boxes are
projected back to the ground plane, as it can be seen in
the BEV image of Fig.1. In this case, 8 cars were correctly
detected by the LIDAR and the camera (red boxes) and one
additional car located at 65 m was detected by the image
process (blue box).

IV. EXPERIMENTAL RESULTS

A. Experiments

We evaluate our vehicle detection and localization pro-
posal on the challenging KITTI object detection benchmark
[4]. The dataset provides 7,481 images for training with
ground truth annotations and 7,518 images for online testing
without ground truth. As the online testing only evaluates 2D
detection, we conduct our evaluation on the training set. To
evaluate localization, we use point cloud in the range of [0,
70] x [-40, 40] meters. Ground truth labels are transformed
to the LIDAR coordinates with the transformation matrices
provided by the dataset.

For implementation, we use our ERFNet pre-trained on
the Imagenet dataset and trained on Cityscapes with 19
classes. A complete set of data augmentation is carried
out to get robust semantic segmentation in any domain.
Evaluation is carried out on the KITTI training set for the
vehicle class, taken into account that these images have
not been seen before for our CNN. Main research efforts
are being put on enlarging deep architectures to achieve
accuracy boosts in KITTI (usually training data is split into a
training and validation set), forgetting that these algorithms

must be deployed in a real vehicle with images that were
not seen during training. In this paper one of our goals is
achieving robustness in any domain. A deeper explanation
of the domain adaptation capability of our proposal can be
found in [27].

About the CNN training setup, we train all models in the
same conditions using Adam optimization with an initial
Learning Rate (LR) of 1e-4 and Weight Decay (WD) of
2e-4, decreasing LR exponentially until cross-entropy loss
converges. For more details about optimal training setup or
architecture details please refer to ERFNet papers [28] [24].

B. Metrics

We validate our proposal in both the image space and the
world space using Average Precision (AP) in the following
metrics:

1) Bounding box overlap on the image plane. This
is the original metric of the KITTI benchmark. The
3D LIDAR bounding box proposal is projected to
the image plane and the minimum rectangle hull of
the projection is taken as the 2D bounding boxes
after a fusion with the 2D box proposals taken from
the semantic image. Following the KITTI convention,
Intersection over Union (IoU) threshold is set to 0.7
for 2D boxes. This metric evaluate vehicle detection.

2) Bounding box overlap on the ground plane. The
3D bounding box detection, obtained by projecting
back the 2D detected box to the LIDAR coordinates,
is projected onto the 2D ground plane orthogonally.
A detection is accepted if the overlap area IoU with
the ground truth is larger than a certain threshold of
0.5 and 0.7. Since coordinates on BEV images repre-
sent ground coordinates positions, vehicle localization
performance is evaluated with the BEV bounding box.
This metric reflects autonomous driving demand, in
which vertical localization is less important than the
horizontal.

C. Baseline for comparison

As this work aims at 2D vehicle detection and 3D ve-
hicle localization, we compare our approach to representa-
tive LIDAR-based methods as VeloFCN [15] and Vote3D
[12], representative image-based methods as 3DOP [8] and
Mono3D [7], as well as a reference of the multimodal
methods (LIDAR + image) as is the MV3D [20]. For 3D
localization evaluation, we compare with Mono3D [7], 3DOP
[8], VeloFCN [15] and MV3D [20] since they provide results
on the validation set for a IoU of 0.5 and 0.7 on BEV images.
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Fig. 2: Examples of Vehicle Detection and Localization Results: 2D boxes detection in images and 3D boxes projected to the BEV

For Vote 3D, which have no results publicly available, we
only do comparison on 2D detection.

D. Performance of 3D Vehicle Localization

Table I shows AP on KITTI validation set using bounding
box overlap on the ground plane for a IoU threshold of 0.5
and 0.7. Since LIDAR sensors obtain distance measurements
directly, the LIDAR-based method (VeloFCN) performs bet-
ter than image-based methods (Mono3D, 3DOP). Best results
are obtained for the fusion proposals (MV3D and our). Our
method outperforms LIDAR-based and image-based propos-
als for the IoU=0.5 and IoU=0.7 and for the easy, moderate
and hard regime. By combining with visual semantic, our
approach is further improved. MV3D performs much better
than our proposal but our method is the only one that has
not been trained with KITTI images and validation is carried
out over the whole training images and not in a subset of
it. We visualize the localization results of some examples in
Fig.2.

On the other hand, IoU is not well suited for evaluation of
vehicle localization [3] and they propose to evaluate center
offset and size errors separately as evaluation criteria. For the
center offset error the parameters are (xerror, yerror, zerror),
where xerror is the offset in the heading direction of the
vehicle, yerror is the offset in the direction orthogonal to the
heading, and zerror is the vertical (height) offset. For the size
error the parameters are width (orthogonal to the heading
direction, length (parallel to heading direction) and height
(vertical direction) respectively.

We evaluate our method following this criteria and results
are shown in Fig.3 for an IoU threshold of 0.7. 99.85% of the
detection results are localized within an error of 40 cm for
(xerror, yerror) and 50% of the detections have an error lower
than 20 cm for the same parameters. With the exception of
some single outliers that go above a localization error of
1 m, results can be consider good enough. The size error
of the bounding box also shows good results but they are
worse than localization error. This means that our method
to calculate box orientation can be improved. An error of
less than 20 cm for width, less than 40 cm for height and

Fig. 3: Localization error and size error of bonding box

less than 50 cm for length was accomplished for more than
50% of the detections. Height estimation shows a larger error
than width estimation due to only a discrete value is allowed
for this parameter. The largest error is obtained for length
due to this parameter has only some discrete values and it
is difficult to estimate from front view images where many
times rear parts of the vehicles are not seen or are occluded.

E. Performance of 2D Vehicle Detection

Table II shows 2D detection performance for the car
class for an IoU=0.7 on KITTI test set except for our
approach, where training set is used due to this last set
has not been used for training this CNN. Image-based
methods (Mono3D, 3DOP) perform better than LIDAR-
based methods (VeloFCN, Vote3D) in terms of 2D vehicle
detection. This is due to image-based methods directly op-
timize 2D boxes while LIDAR-based methods optimize 3D
boxes. Fusion proposals (MV3D and ours) get intermediate
results because they optimize both 2D/3D boxes. Our method
outperforms LIDAR-based for the easy, moderate and hard
regime but gives worse results than image-based for the three
regime. However, this is not representative for autonomous



driving applications where 3D vehicle detection and loca-
tion and not 2D vehicle detection is the key parameter.
Our proposal shows comparable results than MV3D on AP
performance and a good capability to generalize to diverse
domains because Cityscapes and KITTI datasets are quite
different.

TABLE II: 2D Detection performance: Average Precision (AP) in
% for car class on KITTY test set excepts for our proposal where
training set is used.

Method Data Easy Moderate Hard
Mono3D [7] Mono 92.33 88.66 78.96
3DOP [8] Stereo 93.04 88.64 79.10
VeloFCN [15] LIDAR 71.06 53.59 46.92
Vote3D [12] LIDAR 56.80 47.99 42.57
MV3D [20] LIDAR+Mono 89.11 87.67 79.54
Ours LIDAR+Mono 90.45 78.28 73.20

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a method to fuse 3D LIDAR
point cloud with image semantic segmentation, obtained
through our RGB-based CNN called ERFNet, to detect vehi-
cles in images and localize them in a Bird’s Eye View (BEV)
point cloud projection. Our method takes advantage of both
LIDAR point cloud and images. Our approach outperforms
existing LIDAR-based and image-based methods for 3D
vehicle localization and is on par with other state-of-the-
art multimodal proposals for 2D vehicle detection on KITTI
benchmark. Besides, our CNN was trained in another dataset,
showing a good generalization capability to any domain.
Additionally, we studied pose and size errors of the detected
vehicles showing that, although our box orientation estima-
tion is still suboptimal, results are promising for autonomous
driving.

As future work we plan to use CNN for estimating box
poses and size in the ground plane and integrate the method
in our open source electric vehicle prototype to be evaluated
in real conditions.
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