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Abstract: This paper presents an improvement in the colour image segmentation in the 

Hue Saturation (HS) sub-space. The authors propose to inject (add) a colour vector in the 

Red Green Blue (RGB) space to increase the class separation in the HS plane. The goal of 

the work is the development of an algorithm to obtain the optimal colour vector for 

injection that maximizes the separation between the classes in the HS plane. The chromatic 

Chrominace-1 Chrominance-2 sub-space (of the Luminance Chrominace-1 Chrominance-2 

(YC1C2) space) is used to obtain the optimal vector to add. The proposal is applied on each 

frame of a colour image sequence in real-time. It has been tested in applications with 

reduced contrast between the colours of the background and the object, and particularly 

when the size of the object is very small in comparison with the size of the captured scene. 

Numerous tests have confirmed that this proposal improves the segmentation process, 

considerably reducing the effects of the variation of the light intensity of the scene. Several 

tests have been made in skin segmentation in applications for sign language recognition via 

computer vision, where an accurate segmentation of hands and face is required. 

Keywords: pixel classification; colour clustering; colour segmentation; class separation; 

colour sub-spaces; colour injection 
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1. Introduction 

In recent years, a significant amount of work has been published in the field of colour segmentation 

for Human Computer Interfaces (HCI). We would like to emphasize those related to the segmentation 

of the natural colour of skin. In this area, Phung et al. [1] proposed a skin segmentation method using a 

Bayesian classifier, obtaining satisfactory results for different colour spaces such as: RGB, Hue 

Saturation Value (HSV), Luminance blue-Chrominance red-Chrominance (YCbCr) and Commission 

Internationale de l'Éclairage’s Luminosity a-channel b-channel (CIE-Lab), even under adverse 

illumination conditions. Hsu et al. [2] suggested the detection of face skin considering a nonlinear 

subspace from the YCbCr space to partially compensate the luminosity variations. 

The robustness of the segmentation against luminosity changes is one of the most desirable features 

in colour segmentation systems. For this reason, much work on this topic has been focused on 

minimizing the effects of illumination changes by using colour spaces where the luminance or intensity 

component can be easily isolated, thus providing chromatic constancy. The actual trend in applications 

with important time-varying-illumination changes is to use dynamic colour models that can adapt 

themselves to compensate for variations of the scene illumination. In this area, an extensive overview 

of previous investigations in the skin colour segmentation field is presented by Sigal et al. [3]. 

The most frequently used colour spaces in these types of applications are HSV [3,4] and normalized 

Red Green (rg) [5-7]. The HSV space, as well as the Hue Saturation Intensity (HSI) and Hue Lightness 

Saturation (HLS) spaces, are widely used in image processing because it is very intuitive for the human 

brain to interpret the information as it is represented. In some works, only the Hue (H) and Intensity (I) 

components are used in the clustering process [8]. In other cases, a threshold value for the Saturation 

(S) of each pixel based on its intensity is defined [9]. This threshold is used before the clustering 

process to determine if S should be replaced by H or I. 

In general, all these segmentation proposals offer good results for objects with significant size in the 

scene or in cases where the main goal is object tracking, but not in the case of shape recognition. If the 

goal is to recognize the object shape, the system requirements are higher and very accurate 

segmentation techniques should be applied. Further difficulties may arise if the images have low 

quality and spatial resolution. Sign language recognition systems based on computer vision are a good 

example of these types of applications. In this case, the camera should capture all the upper parts of the 

speaker’s body, implying that the parts to segment (hands and face) constitute a small part of the 

captured scene. In this field, Habili et al. [10] performed a pixel-by-pixel classification of the skin 

colour with discriminant features of the CbCr plane, using the Mahalanobis distance, but they needed a 

fusion of motion cues to obtain good results. Similar skin segmentation is achieved in the work done 

by Chai et al. [11], where post-segmentation stages were applied, such as morphological operations, in 

order to surpass the limitations of the segmentation. The YCbCr space has been also used [11]. This 

colour space is one of the most widely used in the segmentation process.  

In this field, Ribiero and Gonzana [12] presented hand segmentation in video sequences by means 

of the Gaussian Mixture Model (GMM) background subtraction algorithm, which is a well-known 

statistical model for density estimation due to its tractability and universal approximation capability. In 

this work, [12], an adaptive Gaussian mixture in time is used to model each pixel distribution in RGB 
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space. In Huang and Liu’s work [13], clustering of colour images using GMM technique in HSV space 

is performed. 

Less common colour spaces are also used in other works: both linear transformation spaces, like 

Luminance E-channel S-channel (YES) [14], and non-linear, spaces like the Uniform Chromaticity 

Scale (UCS) spaces, such as Luminance u-channel v-channel (L*u*v*) and its representation in 

cylindrical coordinates Intensity Hue Saturation (IHS) [15], Saturation Tint Value (STV) [16] which is 

a representation of HSV space by the normalized RGB components. Other spaces used are the Spherical 

Coordinate Transform (SCT) [17] and the geodesic chromaticity space pq [18]. 

We can also find works related to object/background segmentation with the objective of efficiently 

delimiting object edges. Some of these publications present the use of graph cuts in N-dimensional 

images to segment medical images from computed tomography (CT) scanners [19,20], and multilevel 

graph cuts to accelerate the segmentation and optimize memory use [21]. From our point of view, the 

main disadvantage of these works is that they are not designed for real-time purposes. 

The conclusion of these previous works is that important unresolved problems still exist in order to 

obtain efficient skin segmentation, especially if we take into account that many applications require 

real time processing, include complex scenes, are prone to important illumination changes, and the 

objects to segment (face, arms and hands) are small when compared to the captured scene.  

Our contribution to the solution of this segmentation problem is to use an object/background  

pre-processing technique to enhance the contrast (in the HS plane) between the colours corresponding 

to the objects to segment and the background in each frame. This pre-processing consists of increasing 

the separation between the object and background classes in the HS plane to optimize the segmentation 

in that plane.  

In our proposal, to increase the class separation, a colour vector of components R, G, B, is 

added to the R, G and B images directly captured from the camera, modifying the value of each pixel 

(n) to (Rn+R, Gn+G, Bn+B). The objective of this paper is to present the process needed to obtain 

the values R, G and B that optimize the separation between the classes of interest once the image 

has been converted to the HS plane. This optimization is carried out by means of an algorithm that 

maximises the Fisher Ratio. We have called the colour vector addition process “colour injection”. In 

our proposal, the colour injection process is achieved using the relationships between the RGB,  

YC1C2 [8,22,23] and HSI [24-26] colour spaces, and the properties of the C1C2 plane.  

Our system may be particularized to recognize sign language in real-time and special attention has 

been paid to the detection of the geometric form of the parts to segment, hands and face edges, in each 

frame. Our proposal has been thoroughly tested with very good results even with illumination 

variations, because it isolates the I component. We always attempt to work outside the instability or 

achromatic zone of the HS plane, due to the convenient redistribution in the HS plane of the existing 

classes in the colour injected image (seen in [15] for the IHS space). In order to perform a comparative 

qualitative study between the segmentations of the original images and the colour injected images 

(proposal presented in this paper), a GMM clustering technique in the HS classification domain is used. 

This technique has been used in a similar way for the HSV space [13]. In previous works, different 

formulations for the HSI space can be found [22,24-26]. We use the formulation proposed in [26]. 
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This paper has been organized as follows: Section 2 describes the basis of the proposed algorithm to 

increment the separation between classes. Section 3 presents the criteria considered when separating 

the classes. Section 4 describes the off-line initialization stage of the proposed algorithm. Section 5 

details how to improve the separation between classes in the HS plane starting from their location in 

the C1C2 plane. Section 6 presents the algorithm that performs the optimal class separation. Section 7 

describes how to obtain the colour vector for injection, and its effects in the captured images. Section 8 

contains the experimental results, and Section 9 provides the conclusions and future work. 

2. Overview of the Colour Injection Algorithm 

The objective of this work is to improve the segmentation process using colour injection. In order to 

do that, a colour vector for injection is obtained for each captured image in the RGB space. This colour 

vector is considered optimal, because it is calculated to maximize the separation between the classes to 

segment in the HS plane (subspace where the segmentation is performed). For this reason, this colour 

vector will be called optimal colour vector in this paper and will be denoted by ir. It is injected in the 

RGB space and is calculated starting from significant samples (seeds) from the object to segment and 

from the part of the scene considered as background. The procedure to obtain the vector ir, and the 

reason why it is optimal is explained in Sections 6 and 7. This optimal colour vector is given by: 

=[ ]T
R G Bri     (1)  

where R, G and B are the increments of the colour components R, G and B, respectively.  

The optimal colour vector, ir, is injected in every frame of an image sequence in real-time 

applications to segment objects in colour images. Its efficiency has been especially tested in 

applications where a reduced contrast between the background colour and the colour of the object to 

segment exists, when there are illumination changes and the size of the object to segment is very small 

in comparison with the size of the captured scene. 

An important property of the perceptual colour spaces (such as the HSI space) is that they produce a 

maximum disconnection between the chrominance and luminance components. As a result, the 

luminance can be almost fully isolated, making the segmentation process more invariant to the changes 

in shades and illumination as in [4]. For this reason, the analysis of the colour injection effects in the 

HSI space is made only using the H and S chromatic components (HS plane). 

As the segmentation is performed using the HS components, we try to separate the representative 

vectors of the two classes (object and background) in angle (H component) and in magnitude (S 

component) using colour injection. However, special attention should be paid in this separation process 

to the variations of the dispersions (reliability) of both classes after the colour injection, because it has 

a very high incidence in the class separation process. 

In short, if the original image is denoted by I, the optimal colour vector to add by ir, and the 

coloured image resulting of the colour injection by Ii, is fulfilled: 

iI = I + ri  (2)  

The algorithm proposed in this work is formed by two clearly different stages: an off-line and an  

on-line stage. The off-line stage is an initialization phase whose objective is to determine the optimal 
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number of existing classes in the initial frame, and, from that, to obtain the object (O class) and 

background (B class) classes needed to carry out their separation. The off-line stage is explained in 

detail in Section 4. The result of this stage is the set of significant pixels (seeds) in the RGB space that 

represent both classes, identified by: ORGB = {rO1, rO2… rON}, and BRGB = {rB1, rB2… rBM}, 

respectively, where rOr for r = 1, 2… N and rBq for q = 1, 2… M refer to the pixel vectors of the object 

and background classes, respectively. 

The on-line stage is the novel contribution of this paper. Its objective is to determine the optimal 

colour vector to inject (ir) for each frame in order to increase, optimally, the separation between classes 

O and B. The on-line process is executed before the segmentation process for each frame captured in 

real time. Figure 1 depicts the different phases of a segmentation process that uses the colour injection 

proposal of this paper. 

Figure 1. General block-diagram of the proposed algorithm to obtain the optimal colour 

vector (ir) to be injected to the captured image I. The off-line and on-line processes are 

grouped by discontinuous lines. 

 

 

The on-line process consists of the following stages: 

(1) For every ORGB and BRGB sample from the captured RGB image I, a transformation to the YC1C2 

space is done. Considering the chromatic components after the transformation, the resulting classes 

will be referred to as OC1C2 = {cO1, cO2… cON} for the object class and as BC1C2 = {cB1, cB2… cBM} for 

the background, where the pixel vectors are denoted by “c”.  

(2) Using the properties of the C1C2 plane and the relationship between the HSI and YC1C2 colour 

spaces, the optimal location of the classes in the C1C2 space is obtained by finding the optimal location 

of their respective mean vectors. The optimal location is the one that maximizes the class separation in 

the HS plane (maximum distance between the class means and minimum class dispersions). These 

optimal mean vectors will be referred to as ciOopt and ciBopt. This phase is, undoubtedly, the most 

important of this work, and will be described in detail in subsequent sections.  
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(3) From the mean vectors ciOopt and ciBopt, their corresponding ones in the RGB space, riOopt and 

riBopt, are calculated. 

(4) From the vectors riOopt and riBopt, and the mean vectors of the original classes (ORGB, BRGB) 

denoted by rO and rB, the optimal colour vector for injection is obtained. This optimal colour vector 

can be calculated from one of these expressions: 

opt=r iO Oi r r ,   opt=r iB Bi r r  (3)  

(5) Once the optimal colour vector has been obtained, the new “injected” image Ii can be calculated 

applying (2).  

Finally, the coloured image Ii is transformed from the RGB space to the HS plane, where the 

segmentation is done, because the colour injection has its effects in the HSI space: the increase in the 

separation between the classes only happens in the HSI space or HS plane (in the RGB space the colour 

injection only produces a translation of the classes, keeping the distance between them constant, 

independently of the colour injection). 

The proposed method can be implemented easily and can be used in real-time applications. In the 

following sections, the process to obtain the optimal vector for injection is presented in detail. At the 

end of this paper, in order to facilitate its reading, we have included three appendices with aspects 

related to the relationships between the RGB, the HSI and YC1C2 spaces (Appendix A), statistical 

analysis of vectors in the RGB space and its relationships with the components in the HSI space 

(Appendix B), as well as the invariants of the mean vectors in the C1C2 plane (Appendix C). 

3. Criteria for the Separation between Classes 

Since the objective of our work is to obtain a higher separation between the classes to facilitate the 

segmentation, it is necessary to define a measure of the efficiency of our proposal. The Fisher Ratio 

(FR) is frequently used to measure the efficiency in the class separability in classification  

systems [6,27,28]. This ratio quantifies simultaneously the inter-class separation and the internal 

dispersion (reliability) of the classes. For a two-class system, it is interesting to achieve a large distance 

metric between the class means and a minimum dispersion within each class (leading to a high FR). In 

this work, the FR is used as a pixel classification measurement index, using as discriminant features 

the H and S components of each pixel. 

In a multi-class system, the generalized Fisher Ratio is expressed by [29]: 

-1= tr( )w bFR M M  (4)  

where Mb is the inter-class (between class) covariance matrix and Mw is the internal (within class) 

dispersion matrix of the classes. 

Equation (4) cannot be directly applied due to the circular form of the H component trajectory. 

There are two main reasons for this: 

(a) For two-class systems (as our case is), Mb may not represent the real angular distance between 

the hue means of the classes (the maximum angular distance between two vectors is  radians, even if 

one of the vectors is in the first quadrant of the HS plane and the other one in the fourth one). These 

problems have already been studied, for example in [8]. 
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(b) The second reason is the discontinuity of the hue component when it moves from 2 to 0 radians 

(cyclic property). This implies that Mw matrix does not represent the real hue variance of a class whose 

mean is close to 0 (2). The reason is that some of the vectors would have small angles (close to 0), 

and some others would have very high ones (close to 2), resulting in a wrong and high variance. The 

resulting H mean would also be wrong.  

For the previous reasons, and supposing that the correlation between H and S is low, a particular FR 

has been defined. This FR is individually calculated for each component, and, as our space is  

bi-dimensional, is given by [29]: 

= +H SFR FR FR  (5)  

where FRH and FRS represent the Fisher Ratio of the H and S components, respectively, and are  

given by: 

2

2 2
= h

H

HBHO

θ
FR

σ σ
,  

2

2 2

( )
= O B

S

SO SB

S S
FR

σ σ




 (6)  

where SO − SB is the distance between the saturation means of both classes, SO and SB are the standard 

deviations of the saturation component for both classes, h is the separation angle between the hue 

means of both classes, and HO and HB are the standard deviations of the H component. 

In (6) h  [0, ] represents the real angular distance between the hue means, because  

θh = cos
−1

(CCOB). This avoids the aforementioned problem about the angular distance between the hue 

means of the mean vectors of both classes in the HS plane. CCOB is the correlation coefficient between 

the two mean vectors of the RGB components that have generated the mean vectors in the HS plane 

(Equation C.11) (see Appendix C). In this work, we have performed approximations in the calculation 

of HO and HB in order to avoid the problem of the hue discontinuity. Thus, the approximation for HO 

is: 2 2 2
C S= +HO Ho Hoσ σ σ , where CHo is the standard deviation of every cos(HOr) for r = 1, 2… N and SHo is 

the standard deviation of every sin(HOr). HB is calculated with a similar method. 

4. Initialization Stage (Off-Line Process) 

The first step of the off-line process is the capture of a first frame (initial image). The seed pixels 

that represent the classes O and B are obtained from this image, by means of any clustering technique 

used to identify the existing classes of the image, such as K-Means [30], GMM [13], etc. In this paper, 

the GMM technique is used (in the HS domain) because it provides highly reliable classes, and, as a 

final result, it also provides the mean vectors, the covariance matrixes and the a priori probabilities of 

the classes. The clustering by means of GMM uses the EM algorithm (Expectation Maximization) to 

obtain the optimal location and dispersion of a predefined image class number (K), projected in the HS 

plane. Therefore, a Gaussian model is assumed for each existing class, considering a uniform scene 

illumination. The GMM algorithm is applied several times, initializing it with different K values, in 

order to obtain the optimal number of existing classes in the image (Kopt). Kopt corresponds with the K 

that produces the smallest error in the log-probability function of the EM algorithm, indicating that it is 

the best fit between the K Gaussians and the existing classes. Figure 2b shows the Kopt Gaussians 

projected in the HS plane, fitted to the existing classes in the initial image of the example in Figure 2a. 
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Finally, Figure 2c depicts the original image segmentation as a function of the different existing classes 

(Figure 2b). 

Figure 2. Class segmentation results of the initialization stage. (a) Initial image, (b) the 

Kopt Gaussians fitted to the classes projected in the HS plane, (c) segmented image 

corresponding with the Kopt classes in the Figure 2b. The colours of the different ellipses 

that represent the Gaussians in the Figure 2b correspond with the colours of the segmented 

regions in the image of the Figure 2c. 

 

Once the GMM algorithm has converged, the following step is to find out the localization of the object 

class (O) in the HS plane. This off-line process is carried out easily, because the approximate location of 

the object class (O) in the HS plane is known at the beginning of the off-line process, as a result of the 

colour calibration adjustments of the camera. This approximate geometric locus in the HS plane is given 

by the mean vector hinit. Taking that into account, the detection of the object class (O) is performed by 

simply selecting the class with the minimum Euclidean distance with hinit. We preferred the Euclidean 

distance over the Mahalanobis distance because the detection of the object class could be incorrect if hinit 

is close to a class with high dispersion, and this class is also close to the object class (O). The reason of 

this effect is the consideration of the class covariance in the Mahalanobis distance.  

Once the object class is detected, the next step is to select the background class (B). The background 

is usually formed by several classes, identified by {B1, B2… BKopt1}. Our objective is to select the Bk 

class that will be considered as representative of the background and that we will be identified simply 

by B. Among all the classes that form the background, we will select the Bk that: 

k k

2
kk

k

(B )
B = arg min

(B )
B

FR

B

P
 

P

     
 (7)  

being kFRP ; k = 1, 2… (Kopt  1) the Fisher Ratio probabilities between the class O and each Bk, 

defined by Kopt
k=1k k k=( )FRP FR FR  where FRk is the Fisher Ratio described in Section 3, and kBP ;  

k = 1, 2… (Kopt  1) the a priori probabilities of each Bk class to be the background class (B) of the 

image (given by the GMM algorithm). 

Once the classes O and B have been identified, the seed pixels that represent both classes are obtained 

through an initial segmentation process of both the object class (O) and the background class (B). In this 

initial segmentation, the pdf (probability density function) of both classes in the HS plane are 
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considered as unimodal bidimensional Gaussians, defined by the parameters obtained by the GMM 

clustering. This segmentation is carried out by selecting the pixels with higher probability to belong to 

the corresponding Gaussian. This stage of pixel selection is performed by truncating each class pdf 

with a determined threshold. This threshold corresponds to a percentage of the maximum probability of 

the corresponding bidimensional pdf, Po, for the class O, and Pb for the class B. The values of  

{Po, Pb}  [1, 0], have been experimentally set to Po = 0.45 and Pb = 0.6, using the Receiver Operating 

Characteristic (ROC) curves obtained from the different tests performed with real images. In this case a 

ROC curve was obtained by each class (O and B), using a set of real images, without and with colour 

injection. The thresholds Po and Pb correspond with the nearest values to the elbows of the ROC 

curves. As the pixel selection is carried out in the HS plane, it is necessary to truncate the pdf in the 

Intensity axis, in order to obtain pixel sets that reliably represent the classes O and B in the RGB space. 

The truncation of this unidimensional pdf is necessary because the H and I components are independent 

(Appendix A) (this is important when the clustering is carried out in the HS plane) and this generates 

correspondence problems when the pixels in RGB components are selected from its projections in the 

HS plane. In this second pdf truncation, the percentages selected of the maximum value of the pdf 

intensity of each class are Pfo for O, and Pfb for B. These percentages have been set to Pfo = 0.4  

and Pfb = 0.5. 

Once the previous process is completed, a random sampling is carried out, selecting N samples for 

the class O and M for the class B, in order to reduce the working space dimension. This is the method 

to obtain the sets ORGB and BRGB mentioned in Section 2. 

5. Separation of the Classes in the HS Plane from Their Location in the C1C2 Plane 

This section details the most important relationships between the statistical mean and variance of 

the classes in the C1C2 and HS planes. Also, the effect of adding the same vector (colour injection) to 

two vectors in RGB space on the projections of these vectors in the C1C2 and HS planes is analyzed. 

This information is used to define an algorithm to easily calculate the optimal vector to inject in order 

to obtain the maximum separation between classes in the HS plane using translations in the plane C1C2. 

5.1. Relationships between the HS and C1C2 Planes 

Given two vectors in the RGB space, rO and rB, the resulting projection vectors in the C1C2 plane, 

cO and cB, and in the HS plane, hO and hB, fulfil (see Appendix A): 

= =c hθ θ θ  (8)  

O Oc h , B Bc h  (9)  

 2 2 2
1= , , = 2 cosc cg θ θc O B O B O Bd c c c c c c   (10)  

 2
2= , , , , , ( )h O Bg θ I I f Hh O Bd c c  (11)  

where c is the angle between cO and cB, h the angle between hO and hB; dc is the distance vector 

between cO and cB, dh is the distance vector between hO and hB; and IO, IB are the intensity means of 
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both classes, object and background, respectively, corresponding to the hO and hB vectors. f(H) is a 

weighting function that depends on the H component. f(H)  [½, 1] (see Appendix B). 

It is important to note that, since the C1C2 plane is linear, when adding a vector ir (injected vector) 

to both rO and rB in the RGB space, the distance vector dc = cO − cB in the C1C2 plane remains constant. 

These constant magnitude and orientation values (invariants of the dc vector) are denoted by ||dc|| and  

(see Appendix C). Therefore, colour injections in the C1C2 plane result in class translations, as in the 

RGB space. This effect can be achieved with a translation vector ic (corresponding to ir) directly added 

in the C1C2 plane.  

Moreover, in the case of the C1C2 plane, (10) is verified (cosine law). Therefore, given that ||dc|| 

remains constant for the different values of ir, the values of , ||cO|| and ||cB||, will be modified as a 

function of the value of ir. In the case of the HS plane, it must be said that if ir is added to the vectors 

rO and rB (contrary to what happens in the C1C2 plane) the difference vector dh also varies. The reason 

is that, according to (11), dh depends on the value of IO and IB and on the f(H) weighting function. In 

any case (8) always holds. 

Figure 3. Correspondence between the mean vectors in the C1C2 plane and the ones in the 

HS plane. The difference vector dc before and after the colour injection is shown. 

 

 

In short, to calculate the value of the colour vector to be added in the RBG space to obtain a 

particular separation between the classes in the HS plane, the authors suggest using the relationships 

between the h vector components in the HS plane, and their corresponding c vector components in the 

C1C2 plane, given by (Equation B.12) and (Equation B.13) (see Appendix B), and the relationship 

between pairs of vectors in these planes, given by (8, 9, 10 and 11).  
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Therefore, the proposed algorithm is based on the analysis of the behaviour of the vectors cO and cB 

in the C1C2 plane and the properties of its difference vector dc (||dc|| and  are invariant). These 

invariants allow us to establish a mathematical relationship between the class mean vectors before and 

after the colour injection. Thus, for example, the separation angle (hue difference) between two vectors 

in the HS plane can be easily controlled with the separation angle of the same vectors (cO, cB) in the 

C1C2 plane, because both angles coincide (8).  

In Figure 3, an example of the correspondence between the vectors cO and cB in the C1C2 plane and 

the vectors hO and hB in the HS plane is shown. The relationships after performing the colour injection 

(vectors ciO, ciB and hiO, hiB) are also shown, as well as the difference vector dc before and after the 

colour injection, where the invariance in magnitude and angle can be observed. From now on, the “i” 

or “i” subscript refers to “colour injection”.  

Figure 3 depicts how the translation of the vector dc has favoured the separation of the mean vectors 

of the classes in both components (H and S), because i > , and (||hiO|| − ||hiB||) > (||hO|| − ||hB||). An 

increase in the separation between the vectors after the colour injection can be verified (I > ). 

However, the vector modules (saturation) decrease (||hiO|| < ||hO||, ||hiB|| < ||hB||), since there is an 

unavoidable compensation effect given by (10) (notice that for a fixed I, ||h|| = const||c||f(H)). 

We could obtain a great number of class locations within the HS plane relocating dc with ic all over 

the C1C2 plane. The determination of the optimal location is not a trivial task. In order to obtain an 

optimal ic, it is possible to apply learning techniques, such as fuzzy systems and neural networks, that 

take as parameters some functions derived from FR’s (6) and the invariants of the vector dc.  

In the following Section (5.2), an algorithm for the calculation of the optimal ir (corresponding to 

optimal ic), conditioned to ||ciO|| = ||ciB||, is explained. 

5.2. Separation between the Hue Means (Angular Separation) 

The separation between the hue means is given by the angular separation between the vectors hiO 

and hiB, which indicate the colour separation. Once the expression of the distance between hiO and hiB 

is obtained, ||dih|| (see Figure 3), an optimization process can be applied to it as a function of the RGB 

components of ir in order to obtain the optimal ir that produces the maximum separation needed. The 

problem when calculating the optimal colour vector is that it is not possible to obtain its analytical 

expression, mainly due to the discontinuities in the function of ||dih|| (11). 

In order to solve the problem posed by the discontinuities of ||dih|| in the HS plane, the authors 

propose to use the C1C2 plane, where the distance function between the vectors ciO and ciB, (||dc||) (10) 

does not present discontinuities, and, as well, remains constant in magnitude and direction for different 

injections of colour vectors. 

The interrelationship (due to the invariants of the vector dc and the relationships between the HS and 

C1C2 planes) between the angle (i) that the vectors ciO and ciB form and their modules (10) should be 

taken into account to obtain the separation angle (hue difference) of two vectors in the HS plane. 

Therefore, the maximum separation angle between the vectors may imply (due to the compensation 

effect) a diminution of their modules, and, consequently, the saturation of both vectors. The saturation 

reduction of the vectors hiO and hiB implies that they become closer to the achromatic zone (the origin 
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of the coordinates system), which means that the colours approximate to gray scale. The consequence 

of this phenomenon is the loss of discriminating power in the segmentation. 

Therefore, the proposed algorithm has been parameterized as a function of the mentioned separation 

angle i between the vectors ciO and ciB. In our case, the optimal angle i is obtained from an 

observation function that measures the effectiveness of the class separation in different locations in the 

HS plane. This function will be described in paragraph f of Section 6. 

When the angle of separation i reaches a maximum, i coincides with the angle whose bisector is a 

straight line p, which passes through the origin of coordinates and is perpendicular to the straight line, 

l, whose director vector is dc (Figure 4).  

Figure 4. Location of the vectors ciO and ciB in the C1C2 plane once the colour injection has 

been performed. 

 

Therefore, the vector for injection (ir) that causes the maximum hue difference, causes the modules 

of both vectors ciO and ciB to become equal (||ciO|| = ||ciB||). It also causes the distance between the 

intersection point of the lines p and l and the extreme of each vector to be ||dc||/2. Figure 4 illustrates an 

example of the location of the vectors cO and cB after the injection of the colour vector (ciO and ciB) 

with those imposed restrictions.  

The authors have given more importance to the angular (H) separation, because increasing both H 

and S at the same time is not possible. The main reason is that H has a discrimination power higher 

than S. Besides, the H component is totally uncorrelated to the I component, which does not occur to 

the S component (see Appendix B). Parameterization only by i implies that we can only control the 

separation between the hue means. The starting point to obtain the distance between the saturation 

means is mainly the location of the vectors ciO and ciB with respect to the saturation weighting function 

in the C1C2 plane. As can be observed, in this process there is no control on the S component, so its 

contribution on the class separation will depend on the modification of the statistics of this component 

with the variation of i. 
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5.3. Separation between the Saturation Means (Saturation Difference) 

In this section, an analysis of the behaviour of the separation between the saturation components of 

two vectors in the HS plane is performed. Given two vectors, for example hiO and hiB, in the HS plane, 

we analyze how the value of the saturation difference between both vectors SO − SB = hiO|| − ||hiB 

varies. In our case, as ||ciO|| = ||ciB|| = Ci, then the intensities (IO, IB) corresponding to both vectors hiO 

and hiB, and the value of the saturation weighting function f(H) of each one, are the parameters with 

significant effect in the value of SO − SB. The reason is that, according to (Equation B.11), the 

difference SO − SB will only have a non-zero value if I and f(H) of both vectors are different (notice that 

the saturation varies inversely with the intensity, and directly with f(H)). As an example, Figure 3 

shows vectors hiO and hiB (overlapped to their respective vectors ciO and ciB), as well as the saturation 

weighting curve f(H). In the case of Figure 3, the colour injection is done supposing IO = IB, therefore, 

the weighting function f(H) is the only responsible for the difference in the module of the vectors hiO 

and hiB, that is, of the separation between the saturation means of both classes. As previously indicated, 

in our proposal there is no control of the SO − SB value, but its behaviour as a function of the colour 

injections performed, parameterized by i, is known. According to this, it can be said that SO − SB is 

determined, as expressed in (12), by: (a) the intensities of the vectors hiO and hiB (IO, IB), and (b) the 

module and angle of dc (the invariants) since these determine the location of the vectors hiO and hiB 

along the curve f(H) in the HS plane. In the case of Figure 3, where hiO is located in the third lobe and 

hiB in the second, it is fulfilled: 

1 2= cot( 2)O B iS S k θ k   (12)  

where:   1 =|| || cos(5 6 ) cos( 2 ) 3B O O Bk I π I π I Icd      and 

 2 =|| || sin( 2 ) sin(5 6 ) 3O B O Bk I π I π I Icd     . 

5.4. Analysis of the Class Dispersion 

In order to obtain the optimal vector for injection, ir, by means of the suitable election of i, we 

should take into account not only the information given by the mean vectors cO and cB in the C1C2 

plane, but also the dispersion of the distributions of both classes. 

In this section we analyze the behaviour of the class dispersions in the HS plane, that is, how the hue 

and saturation dispersions are affected when the classes are translated in the C1C2 plane, as a result of 

the colour injection. A class separation measurement function will be defined to quantify the 

effectiveness of the colour injection. This analysis will be necessary to understand how the H and S 

dispersions are modified with the colour injection, in addition to the performance of the class 

separation measurement function. 

5.4.1. Hue dispersion (Angular dispersion) 

The hue dispersion is determined by the effects of the dispersion transformation when passing from 

the C1C2 plane to the HS plane. If Ro is the (2  N) matrix formed by the N vectors of the O class: cOr; 

r = 1, 2… N, before any translation, the parameters of the O class uncertainty ellipse, i.e., the hue 

dispersion invariants, are obtained from the covariance matrix of Ro, by: 
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 1= tan 2Ou 1OuC CO   (13)  

where O is the angle formed by the semi-major axis of the class uncertainty ellipse with respect to the 

horizontal axis (C1), and C1Ou and C2Ou are the eigenvector components corresponding to the highest 

eigenvalue (Ou) of the covariance matrix. The semi-major and semi-minor uncertainty ellipse axes, uO 

and lO respectively, which represent the maximum and minimum variance, are given by: 

=O Ouu  , =O Oll   (14)  

where Ol is the minor eigenvalue of the covariance matrix. From these dispersion invariants, it is 

possible to obtain the model for the hue dispersion. Therefore, our interest is to obtain a 

correspondence between the hue dispersions in the HS plane by means of the information offered by 

the angular dispersion in the C1C2 plane. Knowing that the variation of the angular dispersion in the 

C1C2 plane corresponds with the variation of the hue dispersion in the HS plane, and since the C1C2 

plane is a Cartesian plane, the problem is posed in the polar coordinates, taking these two 

considerations into account: 

(a) As previously indicated, in the C1C2 plane, the colour injections only produce translations of the 

classes and, therefore, variations of their mean vector modules (||ciO||, ||ciB||). This causes the 

modification of the angular dispersions of both classes, because they depend on Ci = ||ciO|| = ||ciB|| 

(distance between the dispersion centre and the origin of the C1C2 plane). These effects of the hue 

dispersion modification have been observed when performing translations of a class by adding 

Gaussian noise in the RGB space [22,31]. In conclusion, the angular dispersion increases when the 

magnitude of its respective mean vector decreases due to the increment of the separation angle i, 

according to: 

= 2sin( /2)i iC θcd  (15)  

(b) The geometric forms of the class distributions are not predetermined, but they can vary since 

they depend on the samples randomly taken from the object and the background. The colour injections 

produce class translations in the C1C2 plane, implying that from the point of view of the HS plane, the 

dispersion also depends on the geometric form of the classes. The reason is that, for different 

translations of a class, different orientations between the axis of maximum and minimum dispersion 

(represented by their uncertainty ellipse in a C1C2 plane) with respect to the orientation of their mean 

vectors (ciO or ciB) are generated. Therefore, independently of the class mean vector module, a distance 

da exists that contributes to the angular deviation. This distance da depends only on the geometric form 

and orientation of the dispersion after each translation. Then, da, in this case for the O class, will 

depend on the values of O, uO and lO given by (13) and (14). This da can be approximated by means of 

the distance between the centre of the uncertainty ellipse and the intersection point between two right 

lines: one is the tangent line to the ellipse which at the same time passes through the origin of plane, 

and the other line is perpendicular to the previous one and it crosses the centre of the ellipse. With da 

and (15) the angular deviation can be approximated by: 

1=sin ( )iH a iσ d C  (16)  
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As an example, in Figure 5 we depict the object class (O) before a translation, for the addition of a 

vector ic in this C1C2 plane, or, for the injection of a vector ir, directly to the classes in RGB 

components. Over the object class, its respective uncertainty ellipse is shown.  

Figure 5. Uncertainty ellipses of the classes O and B in the C1C2 plane: before the colour 

injection: O (blue) and B (yellow) and after the colour injection: O (black) and B (red). 

Geometric approximation of the hue deviations of the classes, as a function of the ellipse 

locations. The different alignments of the axes of the ellipse with respect to the direction of 

the mean vectors of each class are shown. 

 

 

In Figure 5, we can observe that the semi-major axis of the ellipse is relatively aligned to the mean 

vector cO of the class, causing the perception of the minimum angular dispersion of that class. It can 

also be observed that the module of this mean vector, cO, before the injection is greater than the 

module of the vector after it has been injected, ciO, which, therefore, is also perceived as a minor 

angular dispersion by this effect. We may conclude then, that the initial location of this class in the HS 

plane represents a very favourable case, since the angular deviation before the colour injection is small. 

Nevertheless, for the background class (B) before the colour injection, certain alignment between 

the mean vector cB and the axis of greater dispersion of this class can also be observed, implying a 

reduced angular deviation. However, the problem is that the module of the vector cB is reduced and, 

therefore, the angular deviation increases. In this case, it can be observed in Figure 5 that after the 

colour injection, the angular dispersion of the class Bi is smaller, since the module ciB is greater.  

Figure 6 depicts another example, with the different class locations after four colour injections. The 

modifications of the angular deviations iHO and iHB of the object and background classes as a 

function of the orientation of their respective uncertainty ellipses and the modules of their respective 

mean vectors can be observed. 
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Figure 6. Location of the classes for 4 different separation angles (i) in the polar HS 

plane: (1) i = 33º, (2) i = 57º, (3) i = 97º, (4) i = 163º. The original classes (O and B) and 

the injected classes are shown for the 4 colour injections (Oi's and Bi's). 

 

5.4.2. Saturation dispersion 

The dispersion of the saturation component is not directly affected by the class translations (due to 

the colour injections) in the C1C2 plane, if all the class vectors have the same intensity. The reason is 

that the saturation is a linear function of the C1 and C2 components. The expression of the saturation 

for lobe 1 of f(H) is (Equation B.13) (see Appendix B): 

=
3 3

1 2C C
S

I I
  (17)  

This characteristic of linearity in the C1C2 plane makes the deviation of the saturation (S) constant, 

since the distance between vectors in the C1C2 plane remains constant, independent of the colour 

injection. Nevertheless, in the HS plane S will be different for each lobe of f(H) but will stay constant 

within each lobe. Evidently, if the class vectors have different intensity, the dispersion of the saturation 

will not be constant for each location, not even within the lobes (there is a greater variation of S when 

the dispersion of the intensity component is greater). 

Figure 7 illustrates how the hue and saturation dispersions are modified for the four colour 

injections of Figure 6.  
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Figure 7. Classes projected in an HS Cartesian plane, corresponding with the example of 

the Figure 6, where the dispersion variation of both classes with the colour injections is 

observed. (a) A variable S deviation is shown because the classes keep their original 

intensities: IO  IB  0, (b) A constant S deviation is shown because each class intensity 

is equal to its respective intensity mean, i.e., IO = IB = 0. 

 

 

In this case, the locations of both classes are projected in an HS Cartesian plane. The magnitude of 

the H and S deviation can be appreciated by means of the projections of the corresponding uncertainty 

ellipses of both classes in the axes H and S. In Figure 7a we can observe a diminution of the H 

deviation and the increase of the S deviation when the angle i between the classes decreases, because 

the modules of the mean vectors of both classes increase. It can also be observed how the S deviation 

of the Oi class, is modified more than the deviation of Bi, because the I dispersion of Oi is greater. 

Figure 7b shows the same example as Figure 7a, but with the intensities of the class vectors equal to its 

intensity mean, i.e., IO1 = IO2 = ... = ION = IO, and IB1 = IB2 = … = IBM = IB, implying that IO = IB = 0. 

Then, we can see how the S deviation of Oi, remains constant for each colour injection.  
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However, our interest in this paragraph is to understand how the colour injections affect the 

saturation dispersion. This is the reason why in our algorithm the S deviations of both classes are 

obtained considering their original intensities. 

6. Algorithm for the Optimal Location of the Mean Vectors of Both Classes in C1C2 Plane 

This section presents the strategy used to obtain, in the C1C2 plane, the mean vectors that maximize 

the separation between the classes in the HS plane. This section constitutes the main stage in Figure 1: 

“Optimal location of the mean vectors of the classes in the C1C2 plane”. As shown in Figure 1, for each 

captured image, an algorithm to obtain the optimal location in the C1C2 plane of the mean vectors of 

both classes (object and background) is executed. From these optimal vectors, ciOopt and ciBopt, and once 

the transformation to the RGB space is performed (riOopt, riBopt), the optimal vector to inject, ir, is 

obtained using (3).  

The proposal to obtain these optimal vectors, ciOopt and ciBopt, consists of different phases, and its 

general block diagram is depicted in Figure 8.  

Figure 8. Functional diagram to obtain the optimal location of the mean vectors in the 

C1C2 plane: ciOopt and ciBopt. 

 

 

As can be observed, the proposal includes an iterative algorithm to obtain a set of locations for the 

mean vectors of the classes (ciO and ciB) in the C1C2 plane. The location of each vector will be 

parameterized by the angle formed between both vectors, i. Therefore, we try to obtain a set of  
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in (i1, i2…). Each of them will have associated a measurement index of separation between classes 

that we will identify by HSn (HS1, HS2 …). From the function HSn = f (in), the value of in that 

produces the maximum separation between classes is obtained, in optimal: opt.  

The process begins obtaining the mean vectors of each class in C1C2 plane. These mean vectors  

will be, 

 = , ...O O1 O2 Oc c c c N ,   = , ...B B1 B2 Bc c c c ME  (18)  

From the vectors cO and cB, its difference vector, dc, is obtained. As previously indicated, the 

magnitude, ||dc||, and angle, , of the vector dc are invariant against translations in the C1C2 plane. 

Their values are given by equation (19): 

2 2 1 2|| ||= ( )C1 C2d dcd  ,  
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 (19)  

where dC1 = C1O – C1B and dC2 = C2O – C2B, such that (C1O, C2O) and (C1B, C2B) are the components of 

the vectors cO and cB, respectively. 

The iterative process consists of the following six steps:  

(a) Forced location of the mean vectors in the C1C2 plane 

The original vectors cO and cB are relocated (forced) in the C1C2 plane using the invariants (||dc||, ), 

obtaining the new vectors (cIo and cIb). Each location of the vectors (cIo and cIb) should fulfil the 

following geometric restriction: the straight line that passes through the origin of the C1C2 plane and is 

perpendicular to the vector dc should intersect this last one in ||dc||/2. As previously indicated, this 

implies that: 

Ci = ||ciO|| = ||ciB|| = ||dc||/(2sin(θi/2))  (20)  

This I is the parameter to vary in order to obtain the different locations of the vectors CIO and CIB, 

and, therefore, of the locations of the classes in the C1C2 plane.  

The Cartesian components of these vectors (Figure 4), particularized for the vector CIO, are  

given by: 

= cos( )1iO i iOC C H , = sin( )2iO i iOC C H  (21)  

where hIO is the angle of the vector that can be expressed by: 

= 2 2iO iH π θ   (22)  

Similar expressions can be obtained for CIB. 

The iterative algorithm is initialized with an i equal to  ( is the angle formed by the vectors cO 

and cB). In each iteration (j) of the algorithm, the value of i is increased: i(j) = i(j – 1) + . 

We should also take into account that i represents the hue distance between the mean vectors (HIO 

and HIB) of the classes in the HS plane. This indicates that a direct relationship exists between the class 

translations in the C1C2 plane and the hue separation distance between the class means in the HS plane.  

(b) Verification of the validity for the locations of the CIO and CIB vectors  
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For each increase of i, the validity of the locations of the vectors CIO and CIB is verified. In case 

they are valid, the value of i is included in the set in. The validity of CIO and CIB (validity of i) is 

tested by checking if the components of the corresponding vectors in RGB space (RIO, RIB) fulfil the 

limitations imposed by this space, i.e., the values are in the range [0, 1], because they are normalized 

with respect to 255.  

(c) Calculation of the class translation vector in the C1C2 plane  

The translation vector ic is obtained for each value of in. This vector ic is responsible for the class 

translations from its original position to the forced location defined by in. The translation vector ic in 

the C1C2 plane corresponds to the vector to inject ir in the RGB space. This translation vector can be 

calculated from any of the following expressions: 

=c iO Oi c c , =c iB Bi c c  (23)  

(d) Translation of the classes in the C1C2 plane 

The class translations in the C1C2 plane are performed with the value of ic that has been calculated. 

Therefore, each vector c belonging to the object and background classes are increased by ic: 

O ={ }; =1,2...iC1C2 r rO cc i N ,   B ={ }; = 1,2...iC1C2 q qB cc i M   (24)  

(e) Class transformation from the C1C2 plane to the HS 

The classes in the HS plane (oIhS and bIhS) are obtained from the translated classes oIC1C2 and bIC1C2, 

using (Equation B.12), (Equation B.13) and (Equation B.14). 

(f) Observation function: calculation of the class separation measurement index (HSn) in the  

HS plane 

As the class separation observation function, a normalized measurement index has been defined 

(HS) from the FR described in (5). It has been normalized to obtain HSn = 1 when the class separation 

is maximum. To obtain the HSn corresponding with each in, we consider the mean and the dispersion 

of H and S of the classes, according to (6). Therefore, two class separation measurement indexes as a 

function of in have been defined, one for each component: 

 = 1Hn H HFR FR  ,    = 1Sn S SFR FR   (25)  

The final class separation measurement index is given by: 

= (1 )HSn h Hn h Snk k     (26)  

where kh is a weighting factor between Hn and Sn. The value of kh  [0, 1] is chosen depending on the 

prominence we want to give H or S in the segmentation process. Taking into account that H has a 

greater discriminating power than S, kh > ½ should be fixed. 

This iterative process is repeated until the first non valid value of in is generated, and the pairs 

(HSn, in) are registered to obtain the function HSn = f(in) afterwards. 

Once the set of pairs (HSn, in) is obtained, the in that produces the maximum class separation 

measurement index is selected. A cubic interpolation is performed around that local maximum to 
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obtain the maximum of the interpolation index, HSmax, and its associated angle, opt. Finally, with this 

opt, the ciOopt and ciBopt vectors are obtained using (20), (21) and (22).  

Figure 9. Hue and saturation deviation of both classes as a function of in/2. The difference 

between the saturation means of both classes is shown too. 

 

As an example, Figure 9 shows the variation curves, as a function of in/2, of the statistical data: 

deviations of hue (iHO and iHB), deviation of saturation (iSO and iSB), and difference between the 

saturation means ||SiO − SiB|| needed to obtain the different class separation measurement indexes (25). 

7. Calculation of the Optimal Colour Vector to Add and the Effects that it Produces on the Images 

The calculation of the optimal colour vector to add, ir, is the goal of our proposal, because this 

vector changes the colours of the captured image in a suitable manner, so that the classes separate and, 

therefore, the object class can be more easily segmented. 

Figure 10 shows the values of Hn, Sn and HSn obtained from the values of the statistical data 

depicted in Figure 9. The values of (opt, HSmax) obtained by interpolation are also shown. 

Figure 10. Measurement indexes as a function of in/2. 
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As depicted in the block diagram of Figure 1, once the vectors ciOopt and ciBopt, that represent the 

optimal location of the classes in the HS plane, are obtained, the vectors riOopt and riBopt can be 

calculated. Thus, for instance, for the object class, O: if C1Oopt and C2Oopt are the C1 and C2 components 

of the vector ciOopt respectively, the vector riOopt in RGB space is obtained by: 

1
opt optopt = [ ]T

iO 1O 2OY C CiOr Q  (27)  

where Q is the transformation matrix (Equation A.2) and YiO is the intensity mean of the object class 

translated in the C1C2 plane. The ir vector is obtained with this riOopt applying (3). Considering that the 

colour injection can be made without modifying the mean intensity of the class after the injection of ir, 

YiO = IO holds. Although it is possible to modify the saturation mean varying the intensity mean, in this 

case, we want the saturation mean to be only affected by the f(H) value and the Chroma component 

(C). Therefore, the vector to inject, ir, should have zero mean (E{ir} = 0). The fact that E{ir} = 0 

implies that the intensity mean of the original image (I) and the injected one (Ii) are equal.  

The effect of injecting the vector ir to the original image in the new image, Ii, is a greater 

concentration of the pixel colours around the mean colour of each one of the two classes. That is, the 

colour injection contributes to the histogram equalization of the captured image in the HS plane. This 

equalization has a concentration effect on each class, and, therefore, the injection of ir contributes to 

approaching the class distributions to a Gaussian shape. As an example, Figure 11 shows the 2D 

histograms of image I (Figure 11a) and of the coloured image resulting from the colour injection Ii, 

(Figure11b), for a particular case (Figure 12 images). 

 

Figure 11. Example of 2D histograms in the HS plane for the original image I and injected 

image Ii. (a) Original image histogram, (b) injected image histogram. The class 

redistribution in the injected image when compared with the original image can be 

observed. In the image Ii, an isolation of the main scene classes (O and B) can be visually 

appreciated, as well as a shape closer to the Gaussian form. 
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Figure 11. Cont. 

 

 

In these figures (11a and 11b), the equalization of the histogram produced by the effect of the colour 

injection can be clearly observed. The segmentation of both images is shown in Figure 12c and 12d 

respectively. In this example, Kopt = 4, the O class corresponds with the jacket and the B class with the 

wall. 

 

Figure 12. Reference images for the example of Figure 11. Example of original and 

injected images segmentations: (a) original image, I, (b) injected image, Ii, (c) original 

image segmentation according to the projected classes in Figure 11a and (d) injected image 

segmentation according to the projected classes in Figure 11b. 

 

 

The effect of the class separation between O and B classes can also be directly seen, analyzing the 

class locations before and after the colour injection in their histograms. Figure 13 shows the histograms 

corresponding to the sets OHS and BHS in (a), and the sets OiHS and BiHS in (b). A remarkable increase in 

the hue component separation can be observed in the histograms of Figure 13b due to the  

colour injection.  
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Figure 13. Histograms of the OHS and BHS sets: (a) before the colour injection, (b) after the 

colour injection. 

 

 

The rest of the image classes different from B, Bx  B; x = 1, 2 … Kopt  2, are also affected by the 

effects of the colour injection. In this sense, as the class selected as B is the closest to the class O that 

also has a high probability to be the image background (fulfils equation (7)), when the separation 

between the classes O and B increases, the classes Bx also increase their separation with the class O. 

However, the colour injection decreases the separation between the class O and those classes Bx  

( 'Bx ; x = 1, 2 …) that are closer than B to the class O but that were not selected as class B because they 

had a lower a priori probability. The consequence is that these classes ( 'Bx ) can be considered as class 

O, producing false positives in the object pixel classification.  

Another effect of the colour injection is the automatic compensation of the illumination changes. 

That is, due to the equalization and the separation of the classes O and B in the injected image, there is 

a minimization of the problems produced by the illumination changes. The reason is that the main 

colour component affected by the illumination changes is S, and, as previously explained, our 

algorithm gives more importance to the separation of the most discriminant component, H. Then, both 

classes, O and B, always keep a certain separation, independently of the parameter variation of both 

distributions, and mainly when the mean and variance of the S component vary due to changes in the 

luminous intensity. 

Next, in Figure 14, three histograms are presented, for the original and the injected image. All of 

them have been obtained with the different mean luminous intensity of the image (Im = E{I} = E{Ii}): 

(Im1 = 0.70, Im2 = 0.45 and Im3 = 0.21). The illumination compensation effects mentioned above can be 

observed in this figure.  
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Figure 14. Three 2D Histograms for three intensity mean values for each image, I and Ii: 

Im1 = 0.70, Im2 = 0.45 and Im3 = 0.21. (a) histograms of the image I, (b) histograms of the 

image Ii. We can observe how the distribution statistics of both classes of the image Ii are 

less affected by the illumination changes than the ones of image I. 

 

8. Experimental Results 

A bank of real images from different scenes has been used in a first phase of the practical tests, in 

order to evaluate the effectiveness of the proposed method. Here, a Gaussian classifier has been used as 

a segmentation technique, supposing a unimodal Gaussian model for the respective object and 

background class-conditional pdfs, i.e., p(hi|Oi) and p(hi|Bi). Thus, p(hi|Oi) = g(hi; hiO, iO) is given by: 

 i 1 2

1 1( |O )= exp
22 | |

mp d
π

i

iO

h
Σ

 ; 1( ) ( )md i iO i iOiOh h Σ h hT     (28)  

where hi represents each pixel of the image Ii, and iO is the covariance matrix of the injected object 

class in the HS plane. The segmentation is performed by thresholding the pdf (28) with a Th value. This 

threshold is obtained knowing that we want to segment the class Oi taking the background class Bi as 

reference, so, Th corresponds to the value of pdf (28) when: 11
2

= ( ) ( ) ( )T
md iB iO iB iOiO iBh h Σ Σ h h    

= 11
2
tr( )w bM M . Therefore, Th is given by:  

 1

1 2 4
1 1= tr( )

2 | |
h w bT M M

π


iOΣ
exp  

(29)  

The problems derived from the cyclical nature of the hue in the segmentations have been solved via 

software, using the convention introduced by Zhang and Wang [8]. 

In the evaluation, the same number of samples (seeds) for the object class (O) and the background 

(B) has been taken, M = N, in order to ensure that the difference between their statistical data is for 



Sensors 2010, 10                            

 

 

7828 

intrinsic reasons, and not for differences in the sample space dimension. In the tests, the following data 

have been used: samples number: M = N = 50. Other tests with a higher number of seeds (M = N = 100, 

200, 400, 800 and 1,600) have also been carried out, providing similar qualitative results in all of them, 

but with an increase in the iterative process computational cost. The increase of  used in the algorithm 

shown in Figure 8:  = 5º, interpolation interval  = 3 and the weighting factor kh in (26) has 

been experimentally selected for each experiment, always fulfilling kh  [0.75, 0.97]. In this stage, the 

experimental results have been quantified by means of the FR defined in (5). Table 1 shows the values 

of FR for 14 cases of the bank of images used in the tests. 

Table 1. FR results for 14 cases in this work. 

Case FR FR (Injected) %Increase 

1 49.15 112.32 128.53 

2 74.67 246.82 230.52 

3 11.18 21.84 95.31 

4 68.08 1,826.02 2,581.97 

5 100.82 214.46 112.71 

6 96.27 173.50 80.22 

7 209.62 735.81 251.01 

8 23.91 63.16 164.15 

9 123.15 2,277.07 1,749.00 

10 9.49 44.52 369.11 

11 126.27 946.48 649.56 

12 21.02 197.71 840.32 

13 65.13 74.68 14.66 

14 1.604 5.57 247.70 

 

Fourteen examples of segmentation can be seen in Figure 15 (figures a, b, c, d, e, f, g, h, i, j, k, l, m 

and n) that correspond with the 14 cases of FR calculated in Table 1. Four images are shown in each 

column (from up to down): the upper image is the original one (I), the second one is the coloured 

image (Ii), the third one, the results of the segmentation of the original image (I segmentation), and the 

lower one, the results of the segmentation of the injected image (Ii segmentation). The segmented 

images show the object pixels in green colour. For the figures between Figure 15a and Figure 15m, the 

object class (O) is the skin, and for Figure 15n, the object class is a jacket.  

As can be observed, our proposal to inject a colour vector allows the attainment of remarkable 

improvements in the segmentation process, even with a segmentation technique as studied and 

effective as the Gaussian classifier. 
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Figure 15. Segmentation results for objects in different environments. 

 

 

As a second phase of the experimental tests, and in order to quantify the improvement in the 

segmentation of the injected image with respect to the original image, an analysis, pixel by pixel, has 

been made, comparing with the manually segmented reference images for the 14 cases. The data 

generated in this analysis, without noise added, are shown in Table 2. The performance of the 

segmentation has been measured taking into account the classification Correct Detection Rate (CDR) 

and False Detection Rate (FDR) and the total Classification Rate (CR). CDR is the percentage of object 

pixels correctly classified, FDR is the percentage of background pixels incorrectly classified and CR is 

the total percentage of correctly classified pixels. Table 2 also shows the number (K) of Gaussians used 
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by the GMM algorithm, the FR obtained by the statistics given by GMM for both classes, as well as the 

kh used for each image.  

Table 2. Comparative analysis of the segmentations for the 14 example images shown in 

Figure 15, without noise added. 

Case 
Reference 

pixels
*
 

CDR 

(%) 

FDR 

(%) 
CR (%) Angle (º) ir vector 

kh K 
Fisher Ratio 

I Ii I Ii I Ii θ θi [R G B] FR FRi 

a 10,503 91 97 33 33 67 67 25 179 [−24 0 24] 0.97 5 23 39 

b 18,340 94 97 22 10 78 90 32 116 [−23 4 18] 0.93 5 16 55 

c 5,749 96 89 76 58 24 42 7 282 [−15 −4 19] 0.65 11 6 9 

d 13,460 93 97 13 11 87 89 4 258 [−15 1 15] 0.65 5 6 84 

e 10,097 84 97 26 10 74 90 23 246 [−26 −1 27] 0.87 5 47 157 

f 12,666 97 97 47 24 53 76 56 179 [−4 −8 13] 0.9 7 15 122 

g 13,775 98 91 28 13 72 87 18 171 [−31 14 16] 0.93 5 48 1,118 

h 12,231 91 96 115 29 −15 71 14 158 [−21 6 15] 0.95 6 5 77 

i 9,063 97 95 34 22 66 78 6 126 [−30 20 10] 0.93 5 11 139 

j 12,497 89 97 100 55 0 45 20 167 [−13 2 10] 0.85 5 3 17 

k 12,512 97 95 22 14 78 86 3 193 [−27 7 20] 0.95 5 19 176 

l 23,102 69 94 59 17 41 83 17 23 [−39 44 −6] 0.87 10 5 24 

m 20,176 99 96 31 12 69 88 26 56 [−16 15 1] 0.6 5 25 27 

n 38,629 67 82 35 19 65 81 6 298 [−13 −19 33] 0.55 4 5 21 

Average 90 94 46 23 54 77 18 175 [−21 6 15] 0.83 6 17 148 
*
Segmented Object Reference Image, I original image, Ii injected image 

 

Table 3 shows the results of the comparison of the same images, but contaminated by additive  

zero-mean Gaussian noise. As can be seen, results obtained with the colour injection technique for both 

tests are better than those obtained using only a Gaussian classification. 

As a third phase of the tests, an example of image sequence segmentation is presented. In this case, 

each frame illumination has been modified before the segmentation process, in order to verify the 

advantage of our proposal against illumination changes. The illumination is applied to each frame in a 

uniform way. A zero-mean Gaussian noise with standard deviation np = 0.15IO was also added to the 

pixels of the images. Moreover, a sinusoidal time variation in the luminous intensity has been set up. 

With this example, we try to show the improvements in the segmentation phase when the colour 

injection preprocessing step proposed in this paper is used before the segmentation. In this example, 

the GMM technique is used as an on-line segmentation technique (the same used in the off-line 

process). The original image I is identified by I
k
 for each captured frame in time kT (k = 1, 2... and  

T = time between consecutive images), and its corresponding image after the colour injection, iI
k , are 

segmented using the optimal class number obtained as a result of the off-line stage. In this case  

Kopt = 5. 

For the images I
k
 and iI

k , the GMM segmentation process is applied recursively using the a priori 

probabilities, means and variances obtained in the images I
k1

 and 1
iI
k , respectively. For the 

segmentation of the image iI
k , the next steps are also added: (a) we obtain the pixels (seeds) in the 
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RGB space of the object and background of the image 1
iI
k , (b) the vector ir is subtracted from them, (c) 

they are transformed to the HSI space, (d) the truncation process described in Section 4 is applied, and, 

finally, (e) the sets ORGB
k  and BRGB

k  are obtained. These steps (a, b, c, d and e) represent the block: 

“Obtaining seeds: Object (O) and Background (B)”, for recursive segmentation in the block-diagram of 

the Figure 1. 

Table 3. Comparative analysis of the segmentations for the 14 example images shown in 

Figure 15, contaminated these images by additive zero-mean Gaussian noise. 

Case 
Reference 

Pixels
*
 

CDR (%) FDR (%) CR (%) Noise
†
 

(2
) 

Angle (º) ir vector 
kh K 

Fisher Ratio 

I Ii I Ii I Ii  i [R G B] FR FRi 

a 10,503 51 76 86 52 14 48 0.8  10
−3

 2 74 [−20 2 18] 0.97 5 3 4 

b 18,340 67 84 44 30 56 70 2.0  10
−3

 35 78 [−24 13 11] 0.93 5 4 10 

c 5,749 89 74 140 117 −40 −17 0.5  10
−3

 2 27 [−15 −4 19] 0.65 7 4 5 

d 13,460 62 70 42 38 58 62 1.0  10
−3

 12 272 [−20 0 21] 0.95 6 4 28 

e 10,097 57 85 47 23 53 77 1.5  10
−3

 40 262 [−31 0 31] 0.95 5 4 17 

f 12,666 48 60 70 51 30 49 0.5  10
−3

 158 202 [−5 −8 13] 0.9 7 3 6 

g 13,775 79 84 30 26 70 74 1.5  10
−3

 10 256 [−30 0 30] 0.93 5 8 16 

h 12,231 70 80 64 62 36 38 0.8  10
−3

 1 94 [−26 14 12] 0.95 8 8 17 

i 9,063 77 92 42 25 58 75 1.5  10
−3

 128 265 [−27 −5 31] 0.93 5 5 13 

j 12,497 64 75 115 74 −15 26 1.0  10
−3

 14 344 [−13 2 10] 0.85 10 3 5 

k 12,512 89 89 33 21 67 79 1.0  10
−3

 1 291 [−20 −8 27] 0.9 6 5 13 

l 23,102 80 81 90 29 10 71 0.5  10
−3

 12 14 [−49 75 −26] 0.87 7 5 7 

m 20,176 62 76 52 38 48 62 1.3  10
−3

 19 20 [−9 26 −17] 0.88 5 2 6 

n 38,629 49 90 72 40 28 60 1.0  10
−3

 11 43 [−23 34 −11] 0.6 4 4 17 

Average 67 80 66 45 34 55 1.0  10
−3

 32 160 [−22 10 12] 0.88 6 4 12 
*
Segmented Object Reference Image, I original image, Ii injected image, 

†
Additive Gaussian noise: N(0, 2

)  

 

In image sequence segmentation, as this example, the iterative process (seen in Section 6) has been 

slightly modified in order to reduce the processing time and to increase the stability of the colour 

injection in time. The first modification, is to use opt
1kθ   ( optθ  of the previous frame) as a starting point to 

obtain opt
kθ , thus reducing the search interval to: [ opt

1kθ   f, opt
1kθ  + f]. In the example of Figure 16, we 

have fixed experimentally f = 12º,  = 1º and kh = 0.91. The second modification in the iterative 

process is that the optimal colour vector to inject rik  is obtained recursively, using for the calculation of 

kopt  the following expression: opt opt opt
1= (1 )k k k

t tθ k θ k θ   , where kt  [1, 0] is the constant fixed to obtain a 

proper smoothing of the evolution of the different parameters involved in the colour injection. kt has 

been fixed experimentally to 0.1. 

The GMM technique is used in these tests, mainly to obtain a better adjustment of the Kopt 

Gaussians in each frame, and, therefore, to obtain the maximum quality in the object segmentation. 

Then, a reliable comparison of the segmentation quality between the segmentation of the images I and 

Ii in the time can be carried out, and the compensation effects in the segmentation against illumination 

changes, applying the colour injection or not, can be verified. However, as it is known, this technique 

may have a relatively high computational cost due to the convergence iterations of the EM algorithm, 
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so, its use in video segmentation is sometimes limited. For the consecutive segmentation of an image 

sequence in real time, our proposal in this work is to track recursively the parameters that define each 

Gaussian: O and B, using the optimal estimation provided by the Kalman filter, tracking technique 

widely studied in the image processing field. 

Figure 16 shows the results of the segmentation of the images I
k
 and iI

k  of the example sequence, for 

the frames captured in k = 21, 42, 63, 84, 105, 126, 147, 168, 189 and 210. The respective mean 

intensities of these frames are: 21
mI  = 0.530, 42

mI  = 0.613, 63
mI  = 0.672, 84

mI = 0.698, 105
mI = 0.658,  

126
mI  = 0.572, 147

mI  = 0.510, 168
mI  = 0.403, 189

mI  = 0.307 and 210
mI  = 0.224. 

Figure 16. Segmentation results for 10 frames of an image sequence of a person generating 

sign language with big temporal illumination changes.  

 

 

However, if the variation of the parameters of the different classes of the scene in the image 

sequence is very small, that is, when the scene is relatively uniform in the time with small illumination 

changes, the colour injection can be carried out applying the same colour vector ir to each frame in the 

time kT, with no need to recalculate it. This is possible due to the illumination compensation effect 

previously mentioned in Section 7. In this sense, the segmentation can be carried out keeping the 

parameters of both Gaussians as fixed values in all the sequence. Then, the computational cost is 

noticeably reduced. 

Figure 17 depicts the results of the segmentation of the images I
k
 and iI

k  corresponding to the 

instants: k = 50, 100, 150, 200, 250 and 300 of the previous example image sequence, but, this time, 

without recalculating the colour vector ir and with fixed parameters for both Gaussians. The objective 

of this example is to appreciate the improvement in the segmentation of the sequence of colour injected 

images, although the same colour vector ir is used in the injection. 
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In Figure 17, the upper row depicts the I
k
 images, the central row shows the results of the 

segmentation without colour injection (I
k
 segmentation), and the lower one contains the results of the 

segmentations after the colour injection proposed in this work ( iI
k segmentation). The segmented 

images show the object pixels in green colour. The segmentation process used in this phase has been 

used in the first stage of the experimental tests. 

Figure 17. Segmentation results of 6 frames of an image sequence of a person generating 

sign language with small temporal illumination changes. 

 

 

As a reference, the average execution time (Tp) in Matlab of the on-line process for different M = N 

values is approximately: Tp = 74.9 ms. for N = 50, Tp = 80.0 ms. for N = 100, Tp = 85.4 ms. for N = 200, 

Tp = 95.9 ms. for N = 400, Tp = 117.3 ms. for N = 800 and Tp = 160.4 ms. for N = 1,600. The tests have 

been made with the following configuration: f = 12º in the recursive process, 10% of pixels 

segmented in the previous frame are used to obtain the ORGB
k  and BRGB

k  sets, and the image size is 346 

 421 pixels. The image size affects the execution time of the injection of ir to the original image, and 

the conversion of the injected image to the HS plane for its posterior segmentation. The tests have been 

carried out in a PC with a processor Intel Core 2 Duo with a 2.4 GHz frequency.  

Finally, we show some results of the real-time segmentation of images captured in a scene with 

significative illumination changes. These results highlight again the advantages of using the colour 

injection proposal presented in this paper. Figure 18 depicts the comparative results in two columns: 

the left column (a) shows the segmented images without the colour injection, and in the right one (b) 

the images segmented after applying the colour injection.  

The segmentation has been performed by thresholding the pdf of the skin class seen in (28), once all 

the classes have been obtained with the GMM algorithm. In this case, K = 10 predefined classes were 

used. In order to demonstrate the robustness to illumination changes, an incandescent light bulb has 

been used (that produces a hue change in the whole image that tends to yellow) to really change the 

illumination of the scenes. The different luminous Intensity levels have been quantified with the mean 

intensity of the image normalized between [0, 1]. The corresponding Intensity levels for the five 
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images of each column of Figure 18, starting from the image above, are: I1 = 0.351, I2 = 0.390,  

I3 = 0.521, I4 = 0.565, I5 = 0.610. 

Figure 18. Results of the real-time segmentations with different illumination levels:  

(a) segmentation of original images captured directly from the camera, (b) segmentation of 

the images after the colour injection. 

 

In the performance of this last practical test, a PC with an Intel Quad Core Q6600 @ 2.4 GHz 

processor and 2 GB SDRAM @ 633 MHz memory has been used. Although it is a last generation PC 

with four processing cores (CPUs), our application has only used a single CPU. A Fire-Wire video 

camera with a 1/2” CCD sensor with a 640  480 spatial resolution and an image capture rate of 30 fps 

(RGB without compression) was used. The optic used is a C-Mount of 3/4” with a focal length of  

f = 12 mm. The different algorithms of our proposal (GMM, colour injection and segmentation) have 

been developed in C, under Linux OpenSuSE10.3 (86_64) operating system. With this configuration, 

the average processing time of the on-line process (Tp) is approximately 2 ms for N = 50.  
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9. Conclusions 

A method to increase the separation between two classes in a pixel classification process has been 

proposed. The experimental results demonstrate that injecting colour in the captured image guarantees 

good results in maximizing the class separation, implying that class distributions adopt more Gaussian 

shapes, and, therefore, the segmentation of the desired object improves.  

Its practical implementation results are simple and the process time is small. Even though the 

algorithm needs to calculate both class deviations in each iteration, these are easy to obtain, 

considering that classes are formed by a limited number of samples (N), the increase of i is not very 

small,  = 1º, and the search interval is not very wide: f = 12º. This implies that calculations are 

relatively fast.  

In this work, the expressions of interest to understand the vector’s behaviour in the HSI space have 

been demonstrated from the respective statistics in the RGB space. Moreover, the equations to convert 

directly from YC1C2 colour space to HSI space have been obtained.  

Finally, we should indicate that the images have been directly obtained from the classification 

process without any other auxiliary stage, such as morphological operations. 

For future work, our research is currently focused on the injection of a vector ir with a non-zero 

mean, as a function of the intensity mean desired in the image, to increase the compensation of the 

effects caused by the illumination changes. We are also developing the hue and saturation dispersion 

model when the classes are translated all over the HS plane, using the C1C2 plane, (similar to the hue 

and saturation deviation estimation that is made in [31] for the HSI space defined in [24]). This will 

diminish the processing time, because it will not be necessary to calculate the hue and saturation 

variances of both classes in each iteration. Finally, we are doing research into the class separation 

applying higher order transformations that imply scales and rotations of the classes in the C1C2 plane. 

This could solve part of the intrinsic limitations of the colour injections for just adding the vector ir. 
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Appendix A 

In this appendix, the relationships between the RGB, the HSI and YC1C2 spaces are shown. 

Given a vector =[ ]Tr R G B  located in the RGB space, a vector ' =[ ]T
1 2Y C Cc  in the YC1C2 

space can be calculated using the following expression [8,22,23]: 

=1

2

Y R
C G
C B

   
   
   
   
   
      

Q  (A.1)  

where Q is the space transformation matrix, given by: 

1 3 1 3 1 3

= 1 1 2 1 2

0 3 2 3 2
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 (A.2)  

From (Equation A.1) the components C1 and C2 of the vector =[ ]T
1 2C Cc  are: 

= 1 2 1 21C R G B  , = 3 2 3 22C G B  (A.3)  

From the last equation, the module (Chroma component, C) and angle, H’, of the vector c in the 

plane C1C2 are given by: 
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On the other hand, the components of a vector ' =[ ]TH S Ih  in the HSI space [26] are given by: 
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2 , otherwise

B G
H



 






; 1

2 2 2 1 2

1 2 1 2
=

( )

R G B
R G B RG GB BR

 
     

 
    

cos  (A.6)  

3 ( , , )
= 1

( )

RG B
S

R G B
     


 
min

 (A.7)  

= ( ) 3I R G B+ +  (A.8)  

We can observe that the angles of the vectors c = [C1 C2]
T
 and h = [H S]

T
 coincide (vectors 

superimposed on the HS plane). Therefore, it has been demonstrated that a vector r in the RGB space 

can be projected in the HS and C1C2 planes with the same phase shift but a different module, that is:  

H = H’ but S  C. The relationship between S and C is shown the next appendix. 

Appendix B 

In this appendix, the relationships between the statistics of vectors in RGB components, r, and its 

relationship with the components of their respective vectors, h, in the HSI space or HS plane  

are shown. 

Intensity (I): If  is defined as the mean of the vector r, whose expression is: 

= ( ) 3R G B + +  (B.1)  
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Then, knowing the expression of the intensity component in the HSI space (Equation A.8), the 

intensity of the vectors h’ and c’ is given by: 

= =I Y   (B.2)  

Hue (H): Using (Equation B.1), the expression of the variance of the vector r is given by: 

2 2 2 22=
9
R G B RG GB BR ( + + + + + )  (B.3)  

Relating the Chroma (C) expression (Equation A.4) with (Equation B.3), we can conclude: 

2 2 1 2|| ||= = ( ) = 9 2c 1 2C C C   (B.4)  

Then, the equations of the angles of c in the C1C2 plane and h in the HS plane can be rewritten as: 

,
=

2 , otherwise

B G
H



 






; 1 1 2 1 2

=
9 2

R G B



     

 cos  (B.5)  

Therefore, for any two vectors r1, r2, in RGB components and with similar deviations (), only six 

possible values of H exist in all the range of H in the HS plane where the two vectors overlap. This is 

fulfilled, independently of the intensity of each one, because they are uncorrelated. Since C1 can be 

expressed only as a function of  without (I), the previous equation (Equation B.5) shows the 

independence between the components H and I. 

Saturation (S): The analysis of the saturation component should be made between the colour sectors 

of the HS plane, i.e., (0–2/3), (2/3–4/3) and (4/3–2), because these ranges delimit the three 

discontinuities of the saturation function. Knowing that C1C2 plane has the same colour ranges that HS 

plane, considering the colour sector (0–2/3) and supposing that c is within this sector, its angle can be 

expressed by any or the following expressions: 

1 1 2 1 2
=

9 2

R G BH



     

 cos , 1 3 2 3 2
=

9 2

G BH



     

sin  (B.6)  

The B component is the minimum one for this colour sector, therefore, the saturation equation 

(Equation A.7) is given by: 

2
=
R G B

S
R G B

( + )
( + + )

. (B.7)  

Multiplying by 2 9/2  numerator and denominator of (Equation B.7), and applying (Equation B.1), 

the following expression is obtained: 

   3 2 3 21 2 1 2 32 1=
2 29 2 9 2

G BR G B
S 

  

 


 
 
 
 

 (B.8)  

Substituting (Equation B.6) in (Equation B.8), the equation of this colour sector saturation  

is obtained:  

= 2 ( 3)S H  cos . 
(B.9)  

Therefore, the general equation of the saturation is given by:  
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= 2 ( )S f H
 ; 

( 3); (0 2 3)

( ) = ( ); (2 3 4 3)

( 5 3); (4 3 2 )

H H
f H H H

H H

 
  
  



  
  
  

cos
cos
cos

. (B.10)  

where f(H) is a weighting function that takes values in the range from ½ to 1. This function f(H) 

generates a three lobe curve in the HS plane delimitated by the discontinuities corresponding to the 

three colour sectors of the plane: (0–2/3), (2/3–4/3) and (4/3–2). 

From (Equation B.10) we can conclude that the saturation component of a vector in the HSI space 

varies directly with the standard deviation of the RGB vector that produces it, and inversely 

proportionally with its mean. 

In case we want to control the saturation of a colour keeping the same intensity, only the standard 

deviation () of the RGB vector needs to be controlled, forcing its mean not to vary, i.e.,: I = constant. 

Therefore, relating (Equation B.4) with (Equation B.10) the following expression is obtained: 

= ( ) = || || ( )cS KCf H K f H  (B.11)  

where K = 3/(2I). 

Equation (Equation B.11) represents the relationship between saturation S and the vector c associated 

in the C1C2 plane. As we can observe, the saturation can be controlled varying the magnitude of the 

vector c (C), which is achieved by modifying the standard deviation () of the vector r. Due to H is also 

function of  (Equation B.5), the effect of controlling S by means of c is also determined by the weighting 

function f(H). 

Performing some operations in (Equation B.10), a new form to express the saturation component from 

its components C1 and C2 is obtained. Therefore, (Equation A.5), (Equation B.2) and (Equation B.10) 

may be used to obtain new expressions for the space transformations from YC1C2 to HSI, given by: 

, 0
=

2 , otherwise

2C
H



 






 ; 1

2 2 1 2
=

( )
1

1 2

C
C C

 
     

cos  (B.12)  

3
0 2 3

3

2
= 2 3 4 3

3

3
4 3 2

3

1 2

1

1 2

C C H
Y
CS H
Y

C C H
Y



 

 



   

   

   

 (B.13)  

=I Y . (B.14)  

Appendix C 

In this appendix, invariants of the mean vectors in the C1C2 plane are shown. 

The invariants of the mean vectors are determined by the mean vectors c1 and c2 in the C1C2 plane, 

or directly by the mean vectors r1 and r2 in the RGB space, and have the property of keeping constant 

independently of the colour injection performed. In order to demonstrate it, we define a vector d, which 

represents the distance between them, whose expression is given by: 
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= =[ ]T
1 2d c c C1 C2d d  (C.1)  

where 

1 2= = 1 2 1 2C1 1 1 R G Bd C C d d d   ,   1 2= = 3 2 3 2C2 2 2 G Bd C C d d   (C.2)  

where dR, dG and dB represent the R, G and B components, respectively, of the difference of the vectors 

r1 and r2, and (C11, C21) and (C12, C22) the components of the vectors c1 and c2. If a vector  

ir = [R G B]
T
 is injected in the RGB space, the new difference vector (di) between the injected 

vectors (ci1 and ci2) is given by: 

= =[ ]T
i i1 i2d c c iC1 iC2d d  (C.3)  

where the diC1 and diC2 components are formed by the diR, diG and diB components according to 

(Equation C.2), where the subscript “i” indicates they have already been injected with the respective 

component of ir. As diR = (R1 + R) − (R2 + R) = R1 − R2 = dR, also diG = dG and diB = dB, therefore: 

=id d  (C.4)  

In correspondence with ir, if a translation vector in the C1C2 plane is defined, such as 
T

c C1 C2i =[  ]  , the effect produced in the difference vector di, when ic is added to the vectors c1 and c2, 

is the same as the effect produced by ir, because diC1 = (C11 + C1) − (C12 + C1) = dC1 and also  

diC2 = dC2, therefore, (Equation C.4) is fulfilled. 

From (Equation C.4) we can conclude that this difference vector is not affected by the injection of 

the vector ir in the RGB space, that is, by the addition of ic in the C1C2 plane, remaining as invariant 

factors both its magnitude and its orientation. Therefore, the invariants are: ||d|| and , whose 

expressions are given by: 

2 2 1 2|| ||= ( )d C1 C2d d ,  
 

 

1

1

|| || 0

|| || 0
=

2 ;

C1 C2

C1 C2

d d

d d








  




c

c

d

d

cos

cos
 (C.5)  

The angle  formed between both vectors is obtained with: 

.
=

|| ||.|| ||

T

 21

1 2

c c

c c
cos  (C.6)  

where: 

1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1. = ( ) ( ) 2T
1 2c c RR GG BB RG RB G R G B B R BG         (C.7)  

Considering the covariance, Cov12, of the vectors r1 and r2 in the RGB space, and relating it with 

(Equation C.7), the following expression is obtained: 

12 = (2 9) .T
21c cCov  (C.8)  

Knowing that the Chroma (C) expression of the vector c in the C1C2 plane is: 

|| ||= = 9 2c C   (C.9)  

Substituting (Equation C.9) and (Equation C.8) in (Equation C.6), we finally obtain the angle 

expression: 
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1
12= ( )CC cos  (C.10)  

where CC12 is the correlation coefficient of the vectors r1 and r2, whose expression is given by: 

 12 12 1 2=CC Cov    (C.11)  

We can conclude from (Equation C.11) that the angle between two vectors in the HS plane is the 

arccos of the correlation coefficient between both vectors in the RGB space, and from (Equation C.10) 

we conclude that this angle has a range between 0 and  radians. 
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