
 
 

 

  

Abstract— This paper presents a new method for real-time 
SLAM calculation applied to autonomous robot navigation in 
large environments without restrictions. It is exclusively based 
on the information provided by a cheap wide-angle stereo 
camera. Our approach divide the global map into local sub-
maps identified by the so-called SIFT fingerprint. At the sub-
map level (low level SLAM), 3D sequential mapping of natural 
land-marks and the robot location/orientation are obtained 
using a top-down Bayesian method to model the dynamic 
behavior. A high abstraction level to reduce the global 
accumulated drift, keeping real-time constraints, has been 
added (high level SLAM). This uses a SIFT correction method 
based on the sub-maps’ fingerprints. A comparison of the low 
SLAM level using our method and SIFT features has been 
carried out. Some experimental results using a real large 
environment are presented.    

I. INTRODUCTION 
eal-time Simultaneous Localization and Mapping 
(SLAM) is a key component in robotics. In last years 

several approaches have been used [1][2]. Recent researches 
have demonstrated that camera-based SLAM is very useful 
in domains where the goal is to recover 3D camera position 
in real-time moving rapidly in normal human environments, 
based on mapping of sparse visual features, potentially with 
minimal information about motion dynamics [3]. In [4], a 
3D visual SLAM method, based on a stereo camera and 
SIFT (Scale Invariant Feature Transform) features, is 
presented. Currently, the main goal in SLAM research is to 
apply consistent, robust and efficient methods for large 
environments. One of the main milestones is to achieve large 
closing loops in robot paths running in real-time. 
 Several approaches can be found to solve the related 
issues by using the metric point of view, the topological 
point of view or a mixed one. One example of the last one is 
described in [5]. This solution tries to build a topological 
map composed by several simple metric maps. After that, as 
long as the robot explores new places, the algorithm decides 
whether to build a new sub-map or create a new branch to 
one of the already visited maps. The links contain the 
coordinate system relations as well as uncertainties 
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transformations. In [6] they propose a 3D SLAM using SIFT 
similarity matrix, which are based on visual appearance. 
This allows the recognition of pre-visited places that can be 
quite repetitive. The paper presented in [7] proposes a 
method that is able to close a very large loop with a very 
high number of landmarks on a simulated environment. It 
uses a hierarchical method to represent the different 
probabilistic magnitudes associated to several map regions. 
Also, means to transfer the updates and predictions from the 
top to the bottom of the tree and vice versa are provided. 

This paper presents a real-time SLAM method based on 
stereo-vision. The basis of this work is presented in [8]. The 
system is based on a stereo wide-angle camera mounted on a 
mobile robot. Several visual landmarks are sequentially 
captured and introduced on an EKF filter in order to model 
the probabilistic behavior of the system. A measurement 
model is used for the error on the landmark captures and a 
motion model is implemented for the dynamic behavior of 
the robot. As it is well known, one of the major problems on 
the EKF implementation is the quadratic (n2) increase of 
computational cost as a function of the number of 
landmarks, making it unsuitable for large environments 
where this number can be potentially high. In order to solve 
the problem, we present a modified SLAM implementation, 
which adds an additional processing level, based on SIFT 
visual landmarks (high level SLAM) obtained from time to 
time, to the explained SLAM method, based on the Shi and 
Tomasi operator for the visual landmarks extractions (see 
[8]) (low level SLAM). The global map is divided into local 
sub-maps identified by the SIFT visual landmarks, that we 
will call fingerprint. Then, the robot is locally positioned in 
a sub-map using the low level SLAM. The sub-map 
generation technique is currently performed based on the 
movement of the robot. Then, a fingerprint is taken in case 
that the robot changes its direction over a threshold. 
Currently, we are working a sub-map generation technique 
based on the characteristics of the environment images. So, 
under particular circumstances (total reference loose, too 
high number of landmarks, appearance image changing, etc) 
a new fingerprint should be taken. This process identifies a 
sub-map as the obtained from the images taken from the 
current fingerprint to the next one. A matching process 
between previously captured fingerprints and current one is 
carried out to detect pre-visited zones. The information 
extracted from the matched features of the fingerprint is 
used to update the filter and correct the robot state as well as 
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the whole map covered by the loop.  
Our proposal is based on the Shi and Tomasi operator and 

an own Patch Adaptation method for continuous visual 
tracking instead of the SIFT method, on the low SLAM 
level, due to the high computational cost of the last one. We 
use SIFT from time to time only for loop-closing tasks. This 
strategy has been supported by Andrew Davison in his 
recent IEEE PAMI publication [9]. 

This paper is structured into four main parts. The first one 
presents the low level SLAM implementation and the second 
one the high level SLAM. After that, a large set of results is 
given to show the behavior of our system. A comparison of 
the low SLAM level using our method and SIFT features 
has been carried out. The paper finishes with some 
conclusions and future work. 

II. LOW LEVEL SLAM 

This level implements all the algorithms and tasks needed 
to locate and map the robot on its local environment. 

A. Extended Kalman Filter application 
In order to apply the EKF, a state vector X and its 

covariance matrix P  need to be defined. The purpose of the 
algorithm is to continuously estimate the position and 
orientation of the camera, via the linearization of the next 
state function, f(X), at each time step. Because of the impulse 
motion model used for the camera movement, which will be 
explained later, it is needed to add two more variables to the 
camera state vector vX : the linear and angular speed:  

( )T
robrobrobrobv vqXX ω=      (1) 

In equation (1), robX  is the 3D position vector of the 
camera relative to the global frame, robq  represents the 
rotation vector, robv  is the linear speed and robω  is the 
angular speed. On the other hand, as the whole map has to 
be included into the filter, all the features global position 
state vectors iY  have to be included into the total state 
vector X . So, the state vector ( )T

v YYXX L21=  and its 
corresponding covariance matrix P are defined. 

B. Motion Model 
 The first stage to build the motion model is to predict the 

next state vector and covariance matrix. In this case the 
object to model is a mobile robot. Our model is based on a 
more general application (see [8]). It assumes constant speed 
(both linear and angular) during each time step. There will 
only be random speed changes, which will lead to the so-
called impulse model. In order to be used to the navigation 
of a mobile robot, the motion model has been adapted 
applying some restrictions.  These restrictions are to reduce 
the uncertainty on the “y” linear movement direction as well 
as the uncertainty on rotations around the “z” and “x” axes. 

 According with this model, to predict the next state of the 
camera, the function 

[ ]( )T
robrobrobrobrobv vtqqtvXf ωω Δ⋅×Δ⋅+=  is 

defined. The term [ ]tq rob Δ⋅ω  represents the transformation 

of a 3 components vector into a quaternion. Assuming that 
the map does not change during the whole process, the 
absolute feature positions iY  should be the same from one 
step to the next one.  

C. Measurement Model 
 Visual measurements are obtained from the “visible” 

features positions. In our system, we define each individual 
measurement prediction vector ( )T

iziyixi hhhh = as the 
corresponding 3D feature position relative to the camera 
frame. To choose the features to measure, some selection 
criteria have to be defined. These criteria will be based on 
the feature “visibility”, i.e. whether its appearance is close 
enough to the original one (when the feature was initialized). 
This is based on the relative distance and point of view angle 
respect to the one at the feature initialization phase (see Fig. 
1). The first step is to predict the measurement vector ih . To 
look for the actual measurement vector iz , we have to define 
a search area on the projection images. This area will be 
around the projection points of the predicted measurement 

ih  on both left and right images: ),(: LLL vuU , ),(: RRR vuU . 
To obtain the image projection coordinates, first we apply 
the simple “pin-hole” model and then it is distorted using the 
radial and tangential distortion models, which will be 
detailed later on. To obtain iz  we need to solve the inverse 
geometry problem, applying the distortion models as well 
(see [8]). Respect to the search areas, they will be calculated 
based on the uncertainty of the feature 3D position, what is 
called innovation covariance iS . (see [14]). As we have two 
different image projections, iS  needs to be transformed into 
the projection covariance 

LUP and 
RUP . 
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These two covariances define both elliptical search 
regions, which are obtained taking a certain number of 
standard deviations (usually 3) from the 3D Gaussians. Once 
the areas, where the current projected feature should lie, are 
defined, we can look for them. At the initialization phase, 
the left and right images representing the feature patches are 
stored. Then, to look for a feature patch, we perform 
normalized sum-of-squared-difference correlations across 
the whole search region (see [14]). 

D. Distortion Models  
 To correct the high lens distortion, radial and tangential 
distortion models are applied. The models definition is 
described in [11] and it is applied to the projection jacobians 

ih

iorigh
β

Feature

Fig. 1.  Original and current feature measurement vectors. 
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as well. Taking the left camera, we define, in metric 
coordinates, the distorted ),( LCLC vu  and undistorted 

),( LNCLNC vu  projection coordinates. Then, we can relate 
them as follows, using the direct model: 

( )22
21 22 LNCLLNCLNCLLNCLC urPvuPufu +++⋅=    (3) 

( ) LNCLNCLLNCLLNCLC vuPvrPvfv 2
22

1 22 +++⋅=    (4) 

On the previous equations the following parameters are 
defined as: 222

LNCLNC vur +=  , 4
2

2
11 rKrKf LL ++= . On this 

model, we use LK1 , LK 2  as the radial distortion coefficients 
and LP1 , LP2  as the tangential distortion coefficients. For the 
inverse model, we apply an iterative procedure. 

E. Patch Adaptation 
As it was explained before, as the robot moves within the 

environment, the appearance of the patches changes respect 
to the original one (at the initialization time). At the same 
time as the robot moves away from the original state, the 
difference increases. This leads to an inaccurate matching 
correlation as well as an increase in unsuccessfully 
measurements. A method to transform the appearance of the 
patch is applied to reduce its impact. When the feature is 
initially captured, the 3D positions of all the pixels within 
the patch is estimated and stored. A flat plane parallel to the 
robot is assumed for the 3D patch representation. From now 
on, each time the corresponding feature is measured and the 
patch appearance is estimated by predicting the projection of 
each of the pixels within the patch. An efficient interpolation 
method is applied to obtain the full patch appearance. 

III. HIGH LEVEL SLAM 
As it was stated before, in large environments, as the 

number of landmarks grows the covariance matrix P size 
increases until the processing time exceeds real time 
constraints. To avoid this, only a local visible window of 
landmarks is introduced into the EKF. This, as we will show 
on the results, allows an almost constant processing time 
with number of landmarks increasing (see Fig. 8). 

On the other hand, we need to keep the global map error 
as low as possible. Therefore we need to assure the whole 
map consistency as well. As we only keep local uncertainty 
information on the visible features, it is necessary to add a 
higher level process that preserves the global map 
uncertainty history along the robot’s path, that is the 
cumulative covariance matrix )()1()( kPkPkP XXGG +−= . To do 
that we divide the global map into local sub-maps identified 
by the SIFT fingerprints { }LlsfSF l ...0∈=  each of them 
composed by a set of SIFT features { }MmYfYF l

m
l ...0∈= . 

The process consists in periodically take fingerprints along 
the path covered by the robot (see Fig. 2). Each time a new 
fingerprint is to be taken it is evaluated comparing it to the 
previously acquired fingerprints within an uncertainty search 
region. This region is obtained from GP  because it keeps the 
global uncertainty information of the whole map. In case 
that the result of the evaluation gives that the robot is in a 

previously visited place, a closed loop situation will be 
identified. This situation is explained later on. 

The philosophy of the EKF sub-maps was previously 
presented in [13]. One of the main differences between their 
approach and ours is the local map management. In [13], the 
EKF process is carried out taking into account all landmarks 
within the local maps. We take into account only the visible 
ones. This allows us to keep always a reduced number of 
landmarks being processed within the EKF. On the other 
hand, in [13], a global map is tried to be built joining all 
local maps. Then, a process is carried out to identify all 
duplicated landmarks, closing all possible loops inside. 
Instead, we continuously keep the accumulated global 
uncertainty, allowing the global map correction at any time 
as soon as a closed loop situation is detected. 

A. SIFT Fingerprints 
As we explained before, the way to identify a place is 

based on the so-called SIFT fingerprint. These fingerprints 
are composed by a number of SIFT landmarks distributed 
across the reference image. SIFT features were introduced 
by D. Lowe in [10]. SIFT features are invariant to image 
scaling and rotation, and partially invariant to change in 
illumination and 3D camera viewpoint. In addition, the 
features are highly distinctive, which allows a single feature 
to be correctly matched with high probability. This is 
achieved by the association of a 128 length descriptor to 
each of the features, which will identify uniquely all of 
them. The overall SIFT features extraction is described as 
follows: 

1. Scale-space extreme detection: The first stage of 
computation searches over all scales and image locations. It 
is implemented by using a difference-of-Gaussian function 
to identify potential interest points (local maxima and 
minima).  

2. Keypoint localization: At each candidate location, a 
detailed model is used to determine the feature location and 
scale.  

Fig. 2.  High level map management. 
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3. Orientation assignment: One or more orientations are 
assigned to each keypoint location based on local image 
gradient directions. Relating the future operations to these 
directions the invariance to orientation is achieved.  

4. Keypoint descriptor: The local image gradients are 
measured at the selected scale in the region around each 
keypoint. This information is transformed into a 
representation that will provide an identification of the 
feature. 

In our global process we will store these feature 
descriptors δ

r
 within the global database, using them for the 

fingerprints matching process. The left image coordinates 
and the 3D position are also stored 

( )δ
r

ZYXvuYf LL
l

m = . 

B. Matching Process 
One of the main issues on SLAM in large environments 

is the loop-closing problem. The first issue to solve is the 
recognition of previously visited places, as it was stated 
before. Once a new fingerprint is identified it is evaluated, 
that is, it is compared against all stored fingerprints within 
the uncertainty area. This comparison is carried out through 
a matching process which takes into account, for each pair 
of fingerprints ( )BA sfsf , , both the number of recognized 
SIFT fingerprints and their relative positions within the 
images to compare. The overall process is as follows: 

1. Computation of the euclidean distance between all 
detected SIFT fingerprints on both images, and selection of 
those close enough. 

2. Lines connecting each pair of matched fingerprints are 
calculated. The corresponding lengths BA

jiLn −
,

 and slopes 
BA

jiSp −
,

 are computed as well (see Fig. 7 (b)). 
3. Outlayer features are excluded from the computation 

by the use of the RANSAC method.  
3. The global fingerprint matching probability is 

computed as a weighted function of 2 parameters: Number 
of matched features and Inliers/Outliers relation (see (5)). 

( )OImatchfp nnmmatchesnummP 21_ _ +⋅=      (5) 

Once the loop-closing situation has been detected, the 
whole map must be corrected according to the old place 
recognized. The first step is then, to update the current robot 
state ( )T

robrobrobrob vqX ω  with the detected pre-visited 
place. To do that we use the epipolar geometry applied to 
the matched SIFT features in the same way as in the low 
level SLAM stage. This is achieved thanks to the stored 
fingerprint states 

fpX , which represent the robot states at the 
time of the fingerprint creation. 

After that, the rest of the map, including feature positions 
iY  and fingerprint states

fpX , along the loop must be updated 
accordingly. However, we must assure that the resultant map 
is consistent. The idea behind is that the global uncertainty 

GP  will always grow as long as the robot moves on the 
environment. That means: the error in self-locating will 
increase until the robot revisits an old place that helps to 
reduce its own uncertainty. In terms of map construction, we 

can conclude that the oldest map features will have less 
associated uncertainty and will have to be corrected in a 
lower degree. On the opposite side, a higher degree of 
correction will be applied to more recent features. This 
degree of correction will be modulated as a function of the 
historic accumulated uncertainty along the whole loop: GP  
(see Fig. 3). On this figure we can also observe the location 
of the fingerprints right after each of the corners on the path. 

On equations (6), (7) and (8) we show the 3 consecutive 
steps applied to the position of a single feature in order to 
calculate its estimated new corrected value. ( )GiPΤ  
represents the trace of the global covariance of fingerprint 
associated to the feature i. RD

r
is the 3 components rotation 

expression of the robot rotation matrix robR . Finally, Rot 
represents the transformation of the 3 components vector to 
the rotation matrix expression. The attributes init and fin 
refer to the situation before and after the map correction. 

)(' 1
init

init
iiniti XYRY −= −           (6) 
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Once the loop is closed, GP  takes the value of the 
associated old fingerprint identified. Thus, we update the 
global uncertainty to the new situation. In addition, old 
visited features will become visible again, and can be 
incorporated to the low level EKF process. 

IV. RESULTS 
 In order to test the behaviour of our system, a test video 

sequence has been used. The cameras used were the 
Unibrain Fire-i IEEE1394 modules with additional wide-
angle lens, which provide a field of view of around 100º 
horizontal and vertical. Both cameras are synchronized at 
the time of commanding the start of transmission. The 
calibration is performed offline using a chessboard panel 
using the method referenced in [11]. The test video sequence 
was taken by moving the robot along the upper floor of our 
Polytechnic School building. The complete path, from the 
start point to the loop-closing place, has a perimeter of 
283.25 m (see Fig. 4). We have implemented the low level 
SLAM using two techniques: our proposal and the SIFT 
method introduced by D. Lowe [10], in order to compare its 
performance in a large environment. Fig. 5 depicts the 
obtained results based on the low level SLAM. Both ours 
and SIFT results are showed together with the ground truth 
data. From these results we observe two main deviation 
points on each implementation. The first deviation is 
accused with the SIFT method on the first curve of the path, 
while using our implementation, the robot tend to deviate on 
the third curve. If we represent the cumulative mean error 

( ) ∑
=

−⋅=
n

i
iitotaln XrefXn

0

1ε  on Fig. 6, we appreciate that it 

appears to be higher on SIFT implementation.  
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The reason is that the first deviation causes a cumulative 
drift over the rest of the path. The fact that the cumulative 
error for SIFT was higher than for our method is particular 
for our environment but it is not applied in general for other 
environments. Respecting the high level SLAM Fig. 7 
depicts the representation of the map estimated, including all 
landmarks and fingerprints. The sequence represents the 
map right before and after the loop-closing situation. As it is 
shown, the map keeps the consistency also after its 
correction. After that situation, the system keeps the 

consistency re-introducing the old visible landmarks on the 
low level EKF and still detecting old fingerprints. Respect to 
the processing time, the real-time implementation imposes a 
time restriction, which shall not exceed 33 ms for a 30 
frames/second capturing rate. All results were taken using a 
2.0 GHz speed CPU. Fig. 8 depicts the processing times 
along the whole robot path for both SIFT and our 
implementation. The processing time results are lower 
applying our method than using SIFT, being able to work 
under the real time constraint, keeping the processing time 
quite constant along the whole path. It shows the benefit of 
using our method that the SIFT one. On Table 1 we show 
the average processing times for some of the most important 
tasks in the whole process. We divided it into tasks 
associated to the low level SLAM and the high level SLAM. 

Respect to the first one, we can see the main cause of the 
higher processing time for SIFT implementation, which is 
due to the increase of measurements and feature 
initialization phases computational costs. Even though we 
restricted the keypoints search to the minimum needed area, 
the successive Gaussian blurring phases contribute to 
increase the processing time. This is particularly evident for 

the case of the feature initialization phase, where the search 
area is extended along the whole epipolar line. Regarding 
the high level SLAM, as it is shown, the time dedicated to 
fingerprint matching process as well as the correction of the 
map at the time of loop closing, having 1630 landmarks, is 
significantly higher than real time. It has to be taken into 
account that both tasks do not belong to the continuous self-
locating process that is carried out by the low level SLAM. 
That means that there is no need to complete them within a 
single frame time slot. So, we can obtain a positive 
fingerprint matching result a few frames after it was really 
detected. Then, we can go back and start loop-closing task 
including also the last processed frames. This implies that 
both of these tasks can be computed in parallel, keeping 
them outside the real time computation.      

Fig. 5.  Estimation of the path covered by the robot using SIFT and our 
method. The reference (ground truth) is drawn on solid line.
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Fig. 3.  Representation of the fingerprints global uncertainty GP , in 
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TABLE I 
PROCESSING TIMES 

Low level SLAM processing times High level SLAM processing 
times 

Implementation Our 
method SIFT  

Number of 
features 5 5 Number of features 1630 

Filter step Time  Time 

Measurements 3 ms 47 ms Fingerprint matches 630 ms 
Filter update 5 ms 5 ms 

Feature 
initializations 20 ms 70 ms 

Loop closing 
(Including graphic 

representation time) 

6000 
ms 

V. CONCLUSION 
We have presented a two hierarchical SLAM levels 

method that allows self-locating a robot by measuring the 
3D positions of different natural landmarks. It has been 
demonstrated that using SIFT landmarks for continuous 
tracking on the low level SLAM is less suited that using our 
method, mainly due to the high processing time of the first 

one. Respect to the high level SLAM it has proved that the 
SIFT fingerprints method solves the loop-closing problem 
keeping the real time behavior constant along the path. This 
conclusion has been supported by Andrew Davison in [9]. 
Some improvements can be done in the philosophy of taking 
fingerprints.  
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Fig. 7.  Map representation of a loop-closing situation. The low level landmarks are represented in yellow colour, while the visible and correctly 
measured are represented in red colour. The green numbers show the fingerprint locations. The robot position is represented on the centre of the big blue 

cross.  a) Representation right before the map correction. b) Fingerprint SIFT features matching. c) Representation right after the map correction.  
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Fig. 8. Processing times for low level SIFT (in blue colour) and our 
method in red colour. Real time limit is represented as a constant 33 

ms black line. 
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