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Semantic segmentation represents a promising means to unify different detection tasks, especially pixel-
wise traversability perception as the fundamental enabler in robotic vision systems aiding upper-level
navigational applications. However, major research efforts are being put into earning marginal accu-
racy increments on semantic segmentation benchmarks, without assuring the robustness of real-time
segmenters to be deployed in assistive cognition systems for the visually impaired. In this paper, we
explore in a comparative study across four perception systems, including a pair of commercial smart
glasses, a customized wearable prototype and two portable RGB-Depth (RGB-D) cameras that are being
integrated in the next generation of navigation assistance devices. More concretely, we analyze the gap
between the concepts of “accuracy” and “robustness” on the critical traversability-related semantic scene
understanding. A cluster of efficient deep architectures is proposed, which are built using spatial factor-
izations, hierarchical dilations and pyramidal representations. Based on these architectures, this research
demonstrates the augmented robustness of semantically traversable area parsing against the variations
of environmental conditions in diverse RGB-D observations, and sensorial factors such as illumination,
imaging quality, field of view and detectable depth range.
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1. INTRODUCTION

The increasing demand for traffic safety has spurred efforts from
both academia and industry to jointly develop technologies for
robotics, autonomous vehicles and vulnerable road users. In this
line, one of the concrete examples of this alliance is the resur-
gence of young companies collaborating with universities to
build robotic society where humans and robots interact seam-
lessly, like KR-VISION [1] that cares about the needs of visually
impaired individuals by prototyping generations of assisted
cognition and navigation systems.

Towards this end, roboticists and entrepreneurs are endeavor-
ing to apply computer vision and 3D imaging techniques, which
open the new avenues to solve numerous problems and sur-
pass human-level performance, especially in visual perception
with the advent of powerful object detectors [2] and semantic
segmenters [3]. Precisely, the segmentation process, posed as
per-pixel prediction to divide observed scenes into semantic re-
gions, has been promising for unifying different detection tasks
that are needed for safe navigation [4, 5].

Nowadays, Convolutional Neural Networks (CNNs) stand
out over state-of-the-art solutions for Semantic Segmentation
(SS). The resounding success is not only due to the continuous
accumulation and expansion of per-pixel annotated datasets,
but also the affordable computational resources and mobile
platforms like Nvidia Jetson TX1/TX2. In particular, the large
datasets such as Cityscapes [6], Mapillary VISTAS [7], PASS [8]
and RANUS [9], not only feature a high variability in capturing
viewpoints (from road, sidewalks, and off-road), but also span a
broad range of scenes on different pathways, which extremely
facilitates training of deep models for pixel-wise SS in the cor-
responding context of assisted navigation. Additionally, those
mobile platforms are appealing for real-world applications as
they consume less power and are more compact compared to
desktop workstations counterparts.

As a matter of fact, the choice of CNN architecture does play
a crucial role for SS. However, most of the efforts are spent in
pursuing finer quality and marginal accuracy boosts with sophis-
ticated modules [10–13], forgetting that SS algorithms must be
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efficient and deployable in diverse navigation assistance systems
(see Figure 1), and face real-world scenarios observed through
different cameras. The question then naturally arises, is the SS
approach robust enough? From a robotic perspective, this is
often related to the safety of vision-based wearable cognition
systems, since the SS process will serve as the key enabler to
detect traversability, based on which the user with the semantic
foresight can find the walkable directions and navigate through
obstacles independently [14]. On the other hand, reliable seg-
mentation in unseen domain is challenging, meanwhile attaining
the robustness across diverse observations of wearable cognition
systems will be highly difficult.
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Fig. 1. Overview of the study on the robustness of semantic
traversability perception across navigation assistance systems.

Based on these observations, we aim to address the dilemma,
by exploring in a comparative study across four navigational
perception systems, including a pair of popularly used smart
glasses, a customized prototype and two miniaturized RGB-
Depth (RGB-D) sensors that are being integrated in the next
generation of wearable devices. More concretely, this work not
only introduces new concepts of factorized convolutions, hier-
archical dilations and pyramid representations that constitute
the technical gists of our deep architectures to fulfill real-time
end-to-end predictions, it also highlights the essential role of
data augmentation in robustifying the perception systems. A
comprehensive set of experiments demonstrates that with ap-
propriate data augmentation techniques regarding geometry
(position and shape) and texture (color and illumination), the
models based on our architecture can be robust to the changes
of multiple environmental and sensorial factors.

The paper proceeds as follows: Section 2 reviews the litera-
ture mainly related to traversability perception and SS taking
into account the efficiency and robustness. In Section 3, the
framework is elaborated in terms of system descriptions, archi-
tecture designs and data augmentations. In Section 4, we present
the comprehensive experiments and discussions. Finally, Section
5 concludes the paper with scope of future directions.

2. RELATED WORK

Traversability detection is classically denoted as the segmen-
tation of traversable areas. A vital part of early attempts mod-
eled the ground plane by using growing-based algorithms, or

adapting RANdom Sampling Consensus (RANSAC) [15, 16].
However, real-world ground areas are not always planar sur-
faces or ideally flat. Inspired by this notion, Stixel World [17]
marked a significant milestone in the context of intelligent vehi-
cles. The original motivation was to detect non-flat road surfaces
for autonomous or assisted driving, which allows for flexible
and efficient representation of traffic situations including free
space and moving obstacles.

On application side, adaptation strategies [18–20] were ex-
plored to leverage the Stixel-based technologies for self-driving
cars, and integrate them in wearable navigation assistance sys-
tems. The spirit behind is that the representation can be explored
to generate acoustic feedback by sonifying stixels [18] or haptic
feedback [19] with vibrating motors, such that visually impaired
users can perceive the surroundings without excess burdens. To
overcome the limitations of incompatible assumptions across
application domains, [18] clustered the normal vectors in the
lower half of the field of view, [19] measured the 3D geome-
try of the surrounding layout, while [20] combined additional
IMU observations with vision inputs in a straightforward fash-
ion. However, Stixel-based representation is not sensitive to
low-height objects, which means semantic foresight of low-lying
obstacles can not be easily gained [21]. Moreover, the concept of
traversability perception should not be confined to the segmen-
tation of traversable areas and obstacles. Meanwhile, the uneven
parts of roadways can also be taken into consideration, such
as semantic awareness of hazardous curbs, which is ardently
desired by visually impaired pedestrians as underlined by our
previous field test [5].

Semantic segmentation becomes visible as a promising ap-
proach to provide a potential generalization and viable unifica-
tion capacity. Intuitively, the detection of roadways, sidewalks,
various terrains and intersections/roundabouts can be covered
in a unified SS framework [5, 22–24]. Although the detection
of curbs has not been practically embodied in any existing SS
framework, we argue that it can also be solved by a semantic
segmenter. Thereby, in this paper, the performance of pixel-level
curb detection is studied together with traditional traversable
area parsing.

Researchers have already put computer vision-oriented
robots into perspective by formulating terrain traversability anal-
ysis as a pixel-wise SS problem. According to the target environ-
ment of a search and rescue robot [25], a Fully Convolutional Net-
work (FCN) [3] was fine-tuned, such that the SS model is geared
towards the cross-season off-road setting. In order to close the
gap between semi-autonomous and fully autonomous driving
capabilities, a FCN was trained to gain semantic understand-
ing with a GoogLeNet architecture [26], which was then fused
with the 3D Stixel-based representation to detect small-sized and
unexpected road hazards. Their approach provides a high classi-
fication accuracy at a relative low computational cost and GPU
memory demands. Such a reasonable trade-off for self-driving
cars has also been achieved by examining the possibility of
building smaller architectures, to name a few efficient networks,
SegNet [27], ENet [28], LinkNet [29], ERFNet [30], ICNet [31],
SQNet [32], DSNet [33], ContextNet [34], FastSCNN [35], and
VeryFastNetwork [36]. In this paper, we propose a cluster of
SS architectures that strike excellent trade-off convincingly ap-
pealing for real-world applications, with special insights into
wearable navigation assistance.

While unsupervised or weakly-supervised segmentation
frameworks [37] generally entail the use of multiple sensors
and suffer from the poor universality of models, currently most
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segmentation networks must learn from labeled data in a super-
vised way to achieve top accuracy. Datasets like Cityscapes [6]
and Mapillary VISTAS [7] have thousands of images, but even
their diversity does not guarantee top performance of contempo-
rary segmenters when ported on an unknown system against un-
seen real-world domains. Under the vital topic of visual domain
adaptation, alternative approaches have been motivated to facil-
itate adversarial learning in feature or output space [38], such
that cross-domain data could be jointly used. However, such
approaches are hard to train as they rely on relatively unstable
Generative Adversarial Network (GAN) [39] setups. Addition-
ally, under common cases, we have no access to the deployment
environment of the individual consumer-oriented systems. De-
spite these recent advances, it is still unclear how SS networks
generalize in an unseen domain across wearable systems.

Robustness study of SS is of immense importance, but it
represents a challenging and so far not fully investigated topic.
Whereas CNN-based semantic perception can be applied to the
fields of assisted navigation as conceptually validated in some
wearable/mobile systems [5, 14, 40], what dominate in prac-
tice are still depth-based segmentation pipelines [15, 16, 18–20].
To address this dilemma, a large body of work used an addi-
tional sensor such as LiDAR towards robust semantic scene
understanding [41]. Another cluster of frameworks incorpo-
rated a multi-stream deep neural network to learn features from
complementary modalities and spectra, each of which is special-
ized in a subset of the input space, such as depth cues in [42],
near-infrared images in [9], and predicted per-pixel polarization
information in [43]. Although these works did confirm the bene-
fits of using multi-modal data for deep scene parsing, non-RGB
spectrum data are not always available in robotics applications.

In order to overcome the impact of non-idea weather condi-
tions and isolate the perception of scenes from environmental
effects, N. Alshammari et al. [44] used an illumination invari-
ant transformation, and notably improved SegNet [27]-based
segmentation performance. Similarly extending semantic scene
understanding to adverse conditions with degraded visibility,
C. Sakaridis et al. [45, 46] made attempts to gradually adapt SS
models from synthetic domains to foggy and nighttime driving
scenes, clearly evidencing the generalization benefits.

On the other hand, the robustness of classical SS architec-
tures and commonly-used additional components have been
rigorously evaluated, especially to adversarial examples [47]. As
far as range-related performance is concerned, G. L. Oliveira et
al. [48] explicitly collected a dataset to measure the robustness of
their human body part segmentation networks when exposed
to multiple scales. While inspiring, the orientation of human
body in their test is invariant, which is apparently less complex
than real-world traversable area parsing. O. Zendel et al. [49]
assessed the real-world applicability of semantic segmentation
algorithms against challenging data, especially those with poten-
tial hazards by embracing the global diversity of traffic situations
extracted from dashcam video materials. M. Larsson et al. [50]
created cross-season correspondence datasets to facilitate fur-
ther research on making SS CNNs more robust to seasonal and
weather changes.

In summary, even though this research area is becoming ac-
tive, there are still lots of gaps. Specifically, the robustness across
diverse RGB-D observations from wearable semantic cognition
systems has not been thoroughly studied. Our work comes to
fill this gap.

3. APPROACH

A. Perception Framework Overview
The semantic perception framework of traversable areas and
hazardous curbs has been integrated into the KR-Vision Smart
Glasses [1] as an instance depicted in Figure 2. It is a com-
mercialized product that aids obstacle avoidance during in-
door/outdoor navigation based on RealSense R200 [52]. We also
design a customized prototype (pRGB-D Sensor [20]), which is
comprised of a ZED stereo camera [51] attached with polariza-
tion filters. In addition, we have two portable RGB-D cameras
including RealSense D435 [53] and ZED Mini, which is part
of the wearable mixed-reality system [54] bringing the best of
virtual and augmented reality together.

To make the following explanations clear, we adopt the pair
of Smart Glasses [1] worn by the user (see Figure 2) as an in-
stance to describe the role of a RGB-D camera-based perception
framework in a navigation assistance system. This pair of Smart
Glasses captures real-time RGB-D streams and transfers them
to the processor, while the RGB images are fed to the network
for pixel-wise SS. As for the depth images, they enable a higher-
level of pointcloud-based obstacle avoidance [16]. In this RGB-D
perception pipeline, the depth images can also be used to de-
tect ground areas by using RANSAC-based algorithm [15] or
Stixel-based representation [19], which will also be studied by
ensuring fair comparability.

B. RGB-D Sensor Systems
The Smart Glasses (RealSense R200 integrated) and RealSense
D435 utilize active stereo, an extension of the traditional pas-
sive stereo approach in which a pattern is projectively texturing
the scene via an infrared (IR) light source and cameras are aug-
mented to perceive IR as well as visual spectra. Very recently,
the D400 family [53] (including RealSense D435) was released,
which features long-range capabilities and high depth resolution
with wide field of view, and therefore has the potential to deliver
more accurate depth maps compared to RealSense R200. The
built-in stereo algorithm in these cameras uses a handcrafted
binary descriptor in conjunction with a semi-global matching
scheme [52]. Smart Glasses and D435 benefit from the global
shutter in fast-moving and outdoor applications. They provide a
reasonable robust solution in both indoor and outdoor scenarios.

Comparatively, the pRGB-D Sensor (ZED integrated) and
ZED Mini implement GPU-accelerated global optimization algo-
rithms to attain dense and large-scale depth perception at dis-
tances more than 10m. Although pRGB-D Sensor and ZED Mini
can also be used indoors, they are more reliable in richly-textured
outdoor environments with abundant local correspondences.
Overall, 3D imagery based on these RGB-D sensors has been a
de-facto standard in diverse robotic vision tasks and the driving
force behind the revolution of many algorithms. In this work,
these four RGB-D sensor systems are selected mainly taking into
the account the environmental adaptability and portability.

The key specifications for navigation assistance of these per-
ception systems are summarized in Table 1. Although these
systems can support larger resolutions (e.g., 1920×1080 or
1280×720), we set their output resolutions close to the VGA res-
olution for streaming to facilitate fair comparison, and use equal
or smaller resolution for efficient segmentation, e.g., 320×240.
Notably, RealSense D435 can deliver depth maps covering a
wide field of view at 91.2◦×65.5◦, but the field of view of its RGB
camera is relatively limited (69.4◦×42.6◦), such that we project
the depth measurements into the RGB images to obtain aligned
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Fig. 2. Overview of a wearable navigation assistance system with a semantic perception framework supporting traversability
awareness and curbs negotiation.

per-pixel RGB-D information. Accordingly, ZED Mini attains the
largest field of view with aligned RGB-D information. The mini-
mum depth range is determined by multiple factors including
field of view, disparity searching range, and possible overexpo-
sure caused by the projected speckles [55]. A small minimum
range denotes that the system can deliver depth information of
a very close obstacle, which is important for safety-critical navi-
gation assistance systems [56]. As far as the maximum values
are regarded, there exists no threshold for Smart Glasses and
RealSense D435 because the maximum depth range of active
stereo-based sensors varies depending on the scene and light
conditions. Nevertheless, we notice their depth maps become
less dense and effective at distances over 10m. Regarding the
size, RealSense D435 and ZED Mini are both miniaturized but
the thickness may be a burden which is induced by the lens
design to attain large field of view. In contrast, RealSense R200
is very suitable for being integrated in a wearable device due
to its small size and light weight (65g), and it has been already
prototyped as the form of a pair of Smart Glasses, which weighs
117g after integration. It is worth noting that in the RealSense
D400 family, smaller depth modules are available (e.g., D430),
but the power consumption (3.5W) is a bit high for wearable de-
vices with its laser speckle emitter projecting a random focused
dot pattern.

C. Semantic Segmentation Architecture
To address the deployability of per-pixel semantic scene pars-
ing, our architecture is designed according to the encoder-
decoder networks like SegNet [27], ENet [28] and our previ-
ous ERFNet [30], as expanded in Figure 3. Table 2 also gives
detailed description of the proposed network built on spatial
factorizations, hierarchical dilations and pyramidal representa-
tions, with central consideration of efficiency and robustness.
PyTorch, TensorFlow implementations and NVIDIA TX1/TX2
deployment codes corresponding to our SS framework have
been open-sourced at [57], [58] and [59] respectively.

C.1. Spatial Factorization

Current trends have paved the road to high SS accuracies since
the appearance of residual layers [60] that avoid the degradation
problem, allowing the gradient to be propagated through a large
number of layers, thus the network will be directed towards
learning the residual representation on identity mapping. The
rationale behind is that identity mapping with shortcuts can
facilitate the optimization of deep networks, since it iteratively
generates small magnitudes of responses by passing main infor-
mation layer by layer. Basically, the residual layer adopted in

state-of-the-art networks has two instances, the bottleneck ver-
sion and the non-bottleneck design. Utilizing 1D factorizations
of the convolution kernels, “Non-bottleneck-1D” (Non-bt-1D)
was redesigned in our previous work [30] to rationally strike a
balance between the efficiency of bottleneck and the learning
capacity of non-bottleneck. The spatial factorization into separa-
ble asymmetric convolutions enables an efficient use of residual
layers to extract feature maps and infer semantic predictions in
real time.

C.2. Hierarchical Dilation

Starting from the observation that increased number of layers
help to learn more complex and abstract features, which leads to
increased SS accuracy but also increased running time, we pro-
pose the Hierarchical Dilated Non-bottleneck-1D block (HD-1D
block), which has two instances including the 4×2 hierarchical
architecture and the 3×3 hierarchical design as illustrated in
Figure 4. Compared with conventional schemes [10, 36], the pro-
posed block is composed of multilevel parallel dilated factorized
convolutions with various dilation rates. This hierarchical struc-
ture enables the network to capture large Field-of-View (FoV)
for varying object sizes and reduce susceptibility to overfitting
on existing datasets, while the enlarged receptive field is earned
with less increased depth of deep CNNs. Vitally, the bypass
connection extends the proposed HD-1D block from a straight-
forward repeated parallel structure by allowing each dilated
layer to attain access to other Non-bt-1D layers, which positively
leads to an implicit deep supervision, such that the depth of
CNNs is not completely sacrificed. In this sense, our HD-1D
block offers context assimilation on large FoV, inference speedup
and competitive accuracy compared with the original architec-
ture that sequentially stacks dilated Non-bt-1D layers [30].

C.3. Pyramidal Representation

Another key reconstruction from the backbone architecture (ini-
tial efficient residual factorized network) lies in the substitution
of the original decoder with the pyramidal module of the PSP-
Net [61], which presumably exploits better the contextual priors
from such representation by combining semantic cues from dif-
ferent sub-regions of the feature map. This modification also
offers critical insights into wearable navigation assistance [5],
including effectiveness to learn common knowledge, robustness
to object size, and smoothness of representation.

In pursuit of these specific characteristics, the pyramid pool-
ing module introduced by PSPNet is leveraged to harvest differ-
ent sub-region representations, followed by up-sampling and
concatenation layers to form the final feature representations.
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Table 1. Specifications of the perception systems.

Smart Glasses [1] pRGB-D Sensor [20] RealSense D435 [53] ZED Mini [54]

Horizontal field of view 55.1◦ 84.9◦ 69.4◦ 87.3◦

Vertical field of view 42.7◦ 54.5◦ 42.6◦ 56.5◦

Resolution 640×480 640×360 640×360 640×360

Minimum depth range 350mm 700mm 250mm 200mm

Maximum depth range Approx. 10m 20m Approx. 10m 12m

Baseline 70mm 120mm 50mm 63mm

Size 101.6mm×9.6mm×3.8mm 175mm×30mm×33mm 90mm×25mm×25mm 124.5mm×30.5mm×26.5mm

Weight 117g (65g) 159g 100g 62.9g

Power 1.6W 1.9W 3.5W 1.9W

640×480×3 (RGB image) 640×480 (Segmented result)

640×480×3
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Fig. 3. The proposed architecture. (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

In this manner, local and global context information are car-
ried from the pooled representations at different locations. By
fusing features under a group of different pyramid levels, the
output of different levels in this pyramidal module contains the
feature map from the encoder with varied sizes. As shown in
Figure 3(c), to maintain the weight of global feature, namely
the feature map with a channel number of 128 outputted by
the encoder, a 1×1 point-wise convolution layer is appended
after each pyramid level to reduce the dimension of context
representation to 1/N of the original one if the level size of the
pyramid level is N. As for the situation is Figure 3(c), the level
size N equals to 4 and we decrease the number of feature maps
from 128 to 32. To be brief, the module uses a global pooling
layer and 3 finer non-overlapping pooling layers with 4 different
bin sizes. Subsequently, these low-dimension feature maps are
directly up-sampled to obtain the same-size features as the origi-
nal feature map through bilinear interpolation for smoothness
consideration. Figure 3 showcases the overall perspective of the
architecture, depicting the feature maps generated by each of
the block, consecutively from the RGB input to the per-pixel
class probabilities and final prediction for the real-world urban
scenario observed by Smart Glasses.

D. Data Augmentation Methods

In essence, deep CNN architectures have evolved a high reliance
on the training data, since the features directly learned by a
model depend entirely on the images that are fed during this
process. In this regard, the diversity of data plays an essential

role to obtain trained models with good generalization capac-
ity. On the one hand, CNNs need to learn the broad variety
of patterns, and enable the filters to discriminate well between
semantic categories. Besides, CNNs need to be prevented from
learning irrelevant features. Data augmentation can fulfill ex-
actly these purposes.

In this framework, we apply a vast array of methods with the
aim of augmenting the limited set of data to improve the robust-
ness [62]. Among these techniques, some have an effect on the
geometry of the categories (i.e., position and shape) and others
have an effect in the texture (i.e., illumination and color). Regard-
less of geometry or texture data augmentation techniques used
during training, the CNN will be affected in learning patterns
from the datasets in order to produce SS output. In this sense, it
is crucial to augment both to improve the network performance
in unseen domains and robustify SS across RGB-D cameras.

D.1. Geometric Augmentations

Horizontal flipping is performed at a 50% chance to add in-
variance to orientation. Translation augmentation, aspect ratio
augmentation are enabled together with scaling and cropping,
by performing random rescaling uniformly 0.5 and 1.0 times
the original height of the image size and another random value
to the image width, and combining it with randomly cropped
regions of the image to keep the same resolution in the training
batch. These three augmentations prevent the CNN from seeing
always the same position of the training images, so it doesn’t
always generate the same activations from the very first layer.



Research Article Applied Optics 6

Table 2. Layer disposal of our proposed network.
“Out-F”: Number of feature maps at layer’s output,
“Out-Res”: Output resolution for input size of 640×480.

Layer Type Out-F Out-Res

EN
C

O
D

ER

0 Original RGB image 3 640×480

1 Down-sampler block 16 320×240

2 Down-sampler block 64 160×120

3-7 5×Non-bt-1D 64 80×60

8 Down-sampler block 128 80×60

9-16/17 Dilated Non-bt-1D layers 128 80×60

D
EC

O
D

ER

0 Original feature map 128 80×60

1 Pooling and convolution 32 80×60

2 Pooling and convolution 32 40×30

3 Pooling and convolution 32 20×15

4 Pooling and convolution 32 10×8

5 Up-sampler and concatenation 256 80×60

6 Convolution C 80×60

7 Up-sampler C 640×480

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

＋

＋

＋

＋

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 16)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 16)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

＋

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 16)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

Non-bt-1D
(dilated 16)

Non-bt-1D
(dilated 2)

Non-bt-1D
(dilated 4)

Non-bt-1D
(dilated 8)

(a) (b) (c)

Fig. 4. Sequential and hierarchical architectures of dilated
Non-bottleneck-1D (Non-bt-1D) layers. From left to right: (a)
Sequential architecture, (b) 4×2 hierarchical architecture, (c)
3×3 hierarchical architecture.

In addition, invariance can be reached against diverse aspect
ratios (e.g., 4:3, 16:9) that can be specific to each camera in a
navigation assistance system. Motivated by the fact that objects
might appear with angle variances in the scene observed by the
wearable devices, we implement the rotation without cropping
by sampling distributions from the angles [-20◦, 20◦].

D.2. Textual Augmentations

Firstly, we alter brightness following a uniform distribution be-
tween [0.8, 1.2] to improve the illumination invariance. Secondly,
we augment contrast by uniformly choosing a jittering value
from the range [0.8, 1.2] to aggrandize invariance to dynamic
range of the scene and the camera. Thirdly, we augment satu-
ration within a uniform distribution between [0.8, 1.2] to add
invariance to different camera sensitiveness in capturing color,
and perform hue augmentation by adding a value from the
range [-0.2, 0.2] to the hue value channel of the HSV represen-
tation, to attain invariance against color deviations. Last but
not the least, sharpness is the term related to the edge contrast,
the texture richness and density, as well as the clarity of details

(e.g., pixel-exact segmentation of curbs versus traversable areas).
Augmenting the sharpness-diversity of the fed images helps the
network to retain invariance to the blurriness due to diffused
light or camera shake which may vary across navigation assis-
tance systems. Otherwise, the lack of invariance may corrupt
the prediction especially around boundaries, leading to seg-
mentation inconsistency. We alter sharpness within a uniform
distribution between [0.9, 1.1].

4. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup
The real-world experiments are performed in public spaces
around the Polytechnic School at University of Alcalá (Madrid)
during a typical sunny workday in Spain, where the shadows
and complex sunlight situations can be challenging to the SS
frameworks. We captured the Campus and the surrounding
Metropolitan scenes using four different perception systems.
For the wearable navigation assistance systems including KR-
Vision Smart Glasses and pRGB-D Sensor, the volunteers have
worn these prototypes along the predetermined route. For the
portable sensors including RealSense D435 and ZED Mini, the
volunteers held them at the height of head-worn devices to cap-
ture the egocentric vision datasets. Each prototype has been
carried along the same route around the campus (about a 1000-
m trajectory). Although the cross-system images are not strictly
aligned, they offer the comparable, ordinal data in our robust-
ness study.

Our raw dataset contains over 6500 images sub-sampled at
4Hz. Each perception system has captured around 1600-1700
RGB-D images, out of which 100 evenly distributed are finely
annotated. In total, 400 RGB-D images are collected and manu-
ally labeled with pixel-wise SS ground-truth for traversability-
related categories: roadways, sidewalks and curbs. This RGB-D-
SS dataset has been offered to the community, publicly available
at [63]. Similar to RANUS [9], our RGB-D-SS is also a multi-
sensorial street scene dataset. Compared with state-of-the-art
evaluation-oriented datasets like WildDash [49] (70 public test
cases), DarkZurich [46] (20 fully labeled images) and PASS [8]
(400 annotated panoramas), our RGB-D-SS is large enough and
it specifically features cross-system RGB-D observations.

The metrics used in this paper correspond to Intersection-
over-Union (IoU) and Pixel-wise Accuracy (PA) that are prevail-
ing in semantic segmentation challenges:

IoU =
TP

TP + FP + FN
(1)

PA =
CCP
LP

(2)

where TP, FP, FN are respectively the number of True Pos-
itives, False Positives and False Negatives at the pixel level,
where CCP and LP denote the number of Correctly-Classified
Pixels and Labeled Pixels, respectively. We also use mean IoU
(mIoU), mean PA (mPA), Pixel-wise Accuracy of traversable area
parsing (tPA) that is calculated by merging the roadways, side-
walks and other traversable scene categories as traversable ar-
eas. Mean Value (MV) of pixel-wise accuracy and Coefficient
of Variation (CV) across navigation assistance systems, are also
employed to analyze the real-world performance:

MV =
1
n

n

∑
i=1

PAi (3)
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CV =

√
∑n

i=1(PAi − MV)2/n

MV
(4)

B. Training Setup
As far as navigational semantic segmentation is concerned, the
challenging Mapillary VISTAS dataset [7] is chosen as the train-
ing dataset, because it consists of many traversability-related
classes across a wide spectrum of outdoor street-level scenes
from different roadways, sidewalks (pavements), complex in-
tersections and roundabouts, which are typical scenarios dur-
ing assisted navigation. In addition, it attains vast geographic
coverage, containing images from different continents. This is
important to enhance reliability because traversability-related
objects like curbs are not exactly the same in different streets,
campuses and countries. In total, we have 18000 images for
training and 2000 images for validation with pixel-exact annota-
tions. Regarding the assistive awareness of semantics of interest
to be rendered for users, we use 27 classes for training, including
the most frequent classes and some assistance-related classes.
These 27 classes cover 96.3% of labeled pixels, which still allows
to fulfill semantic scene parsing. The images come from VISTAS
dataset have very large resolution (higher than 1920×1080), but
they are homogenized to a resolution of 640×480 to be used for
random cropping during the data augmentation phase.

For our deep neural networks, Adam optimization [64] is
employed for model training, which is initiated with a learn-
ing rate of 5×10−5 that decreases exponentially across epochs,
operated with a batch size of 15, momentum of 0.9 and weight
decay of 2×10−4. The maximum epoch number is 300 for all
models trained with data augmentations, separated into two
stages: first the encoder is trained by mapping an input image to
a down-sampled label; then we append corresponding decoder
to the trained network followed by a pixel-wise classifier. No-
tably, focal loss [65] is adopted as the criterion during training
until it converges:

Focalloss =
W

∑
i=1

H

∑
j=1

N

∑
n=0

(1 − P(i,j,n))
2L(i,j,n)log(P(i,j,n)), (5)

where P is the predicted probability and L is the ground truth.
The scaling factor (1 − P(i,j,n))

2 suppressed heavily the loss con-
tribution of correctly-segmented pixels (when P(i,j,n)=0.9, (1 −
P(i,j,n))

2 =0.01). In contrast, it suppressed lightly the loss contri-
bution of wrongly-segmented pixels (P(i,j,n)=0.1, (1 − P(i,j,n))

2

=0.81). In this way, the focal loss concentrates the network train-
ing on wrongly-segmented pixels or hard pixels [66]. Under
the supervision, we found models can yield better results than
conventional cross-entropy loss on VISTAS dataset, as it contains
some less-frequent yet important classes such as traffic lights
and hazardous curbs.

C. Real-Time Performance
As displayed in Table 3, the frame rates of our sequen-
tial/hierarchical ERF-PSPNets are tested. There are some top-
performing networks such as DeepLab V3+ [12] and Dense Rela-
tion Net [13] but they involve computationally-intensive models,
which are expensive to train on low-cost GPUs, and too heavy
to deploy on embedded GPUs or wearable devices. There are
also some models like FRRN [11] and ICNet [31] which rely on
high-resolution input that is normally kept for redundancy to

assist cognition and navigation of the visually impaired. ERF-
PSPNets differ from those complex networks in terms of effi-
ciency and application scenario. Accordingly, we contrast our
architectures with two well-known state-of-the-art networks
for real-time semantic segmentation including ENet [28] and
LinkNet [29]. At 320×240, a resolution that is enough to recog-
nize any urban scene accurately and create effective feedback for
navigation assistance, our 4×2 hierarchical architecture is the
fastest when testing on a cost-effective processor with a single
GPU GTX1050Ti. Admittedly, the runtime of LinkNet is not
able to be tested due to the inconsistent tensor sizes at down-
sampling layers. For this reason, we test at 448×256, another
efficient resolution at which most of the architectures can be eval-
uated, where our 4×2 hierarchical architecture is also the fastest,
outperforming LinkNet by a slight margin. At 640×480, the
VGA resolution, ENet is the fastest, while our models still main-
tain near real-time prediction. This result verifies that the speed
analysis of semantic segmenters should not be confined at single
size since the rising tendencies of runtime with regard to image
resolution are different for various end-to-end networks. Never-
theless, for wearable navigation assistance, 320×240 is arguably
the optimum resolution of the three resolutions, since pixel-exact
features are less desired by the blind user, but entail higher in-
put resolution that incurs longer processing latency. Still, the
mean IoU values of our models tested on VISTAS dataset [7] are
significantly higher than ENet and LinkNet. Here, ENet and our
sequential/hierarchical ERF-PSPNets are trained at 320×240,
while LinkNet is trained at 448×256, both with the full set of
data augmentations.

Table 3. Speed and semantic segmentation accuracy analysis.
“FR”: Frame Rate on a cost-effective GPU GTX1050Ti,
“mIoU”: mean Intersection-over-Union.

Network FR at
320×240

FR at
448×256

FR at
640×480 mIoU

ENet [28] 66.2FPS 57.5FPS 41.8FPS 33.6%

LinkNet [29] N/A 72.5FPS 31.6FPS 39.4%

Sequential
ERF-PSPNet 75.8FPS 62.5FPS 29.1FPS 48.4%

4×2 Hierarchical
ERF-PSPNet 82.0FPS 73.0FPS 33.9FPS 47.1%

3×3 Hierarchical
ERF-PSPNet 77.5FPS 69.4FPS 32.2FPS 48.1%

For the sake of completeness, we also test on an embedded
GPU Tegra TX1 (Jetson TX1) that enables higher portability of
navigation assistance systems, while consuming less than 10
Watts at full load. At 320×240, and our models achieve more
than 22.0FPS. Evidently, the hierarchical architectures are both
faster than the sequential architecture while only causing minor
drop in segmentation performance.

D. Segmentation Accuracy
Table 4 details the accuracy of 17 main navigational classes and
the mean IoU values. It could be told that the accuracy of most
classes obtained with the proposed ERF-PSPNet exceed the exist-
ing architectures that are also designed for real-time applications.
Our architecture has the ability to collect rich contextual informa-
tion without major sacrifices of learning from textures. Accord-
ingly, only the accuracy of Sky is slightly lower than LinkNet,
while most important classes for traversability and traffic safety
perception are both higher, given that these networks are both
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trained with the same data augmentation strategy. Noticeably,
our ERF-PSPNets outperform ENet and LinkNet by a large mar-
gin on less frequent classes, such as Motorcycle, Bike lane, Curb
and Rider, which implies that the ability to gather contextual
information is critical especially for those classes, because it is
generally difficult to classify these classes by using textures from
few training data. This finding is also consistent with [23].

When comparing the hierarchical ERF-PSPNets with the se-
quential version, although the mean IoU values of all classes
used for training is lower, they offer some benefits. Firstly, in
spite of being a possible subjective measure, the mean IoU val-
ues of 17 main navigational classes are higher than that achieved
with the sequential design. Secondly, on some semantic classes
of interest, hierarchical design achieves best accuracies. For ex-
ample, 4×2 hierarchical ERF-PSPNet outperforms the sequential
version on Motorcycle by a margin of 5.6%, and 3×3 hierarchical
ERF-PSPNet surpasses the sequential version on Bike lane by
a margin of 6.9%. We believe such remarkable differences are
not caused by the random process of network training. As indi-
cated by the statistics in Figure 5(b), Bike lane and Motorcycle
correspond to the least frequent classes. For Rider, the class with
the third lowest instance frequency, 3×3 hierarchical design also
exceeds the sequential one, and the accuracy difference between
3×3 and 4×2 versions reaches up to 6.8%. It suggests that the
proposed HD-1D block is promising to boost the segmentation
performance on less frequent classes. Following the rationale
that the ability to capture contextual information helps to reach
better scores on classes with few training data, this result makes
sense since the hierarchical structure is beneficial to capture
objects with varying sizes, which is a critical aspect of context
information [61]. Another evidence is that ENet fails to classify
Motorcycle well as its accuracy is only 0.1%. Such problem of
ENet was also reported in [36]. Noticeably, the performance
gap is more related with instance frequency rather than pixel
frequency as illustrated in Figure 5.

(a) (b)

Fig. 5. Class frequency of the VISTAS dataset: (a) Pixel fre-
quency (portion of labeled pixels), (b) Instance frequency
(number of images with at least one labeled instance).

It is worthwhile to mention that we have also pretrained the
sequential version of ERF-PSPNet on ImageNet [67], eventually
the mean IoU value reaches 48.8%, which is marginally higher
than that achieved using the two-stage “from scratch” strategy
(48.4%). This result reveals that although the transferability of
features of pretraining on a large dataset is advantageous, our
models can also reach good accuracy when trained on a sin-
gle dataset without the need of pretraining that adds training
complexity and may suppose commercial limitations. For the
pretrained sequential ERF-PSPNet without data augmentations,
most IoU values are lower than that trained with data augmen-
tations. The mIoU gap between 48.8% and 46.4% demonstrates
that, although the performed data augmentations were dedi-

cated to robustifying semantic perception against diverse image
styles seen by navigation assistance systems in the real world,
they also boost the performance on unseen validation data.

E. Real-World Performance
Taking an essential step further than experimenting on VISTAS
benchmark, the real-world performance of these trained net-
works are analyzed on our RGB-D-SS dataset that is captured
using four perception systems. We use Pixel-wise Accuracy
(PA) to eliminate the influence of unlabeled classes and facilitate
fair comparison between CNN-based approaches and depth-
based approaches, since traditional traversability perception
algorithms have no ability of direct classification but only detect
the ground plane. Admittedly, our real-world dataset is created
by only annotating pixel-wise ground truth for traversability-
related semantic classes, so it would be reasonable to focus on
the study of robustness using accuracy-based metrics as dis-
played in Table 5.

ENet is well known as an extremely efficient network that
sacrifices its model size and learning capacity to implement real-
time semantic prediction. When comparing the real-world per-
formance between different networks, we notice that although
LinkNet achieves higher accuracy values than ENet on VIS-
TAS dataset, it is not able to exceed ENet on all classes in the
real-world setting, especially the sidewalks. This reveals that
LinkNet still suffers from limited learning capacity, which may
bias the appearances of scenes to be analyzed. Additionally,
both CV metrics calculated for the accuracy terms with LinkNet
are higher than ENet. This comparison indicates that using
LinkNet results in a larger performance variance across naviga-
tion assistance systems, which has preliminarily illustrated that
“accuracy” and “robustness” are not equivalent concepts when
it comes to real-world performance.

Regarding our models, the sequential ERF-PSPNet outper-
forms other networks including ENet and LinkNet. It achieves
the best accuracy with pRGB-D Sensor, RealSense D435 and
ZED Mini in terms of mPA and tPA, despite the sub-optimal
performance second to a certain hierarchical version with Smart
Glasses. Crucially, the effectiveness of data augmentations on
the issue of real-world cross-system robustness is evident from
the experimental results, which are calculated using the outputs
that are produced by models with or without data augmenta-
tions (refer to Table 5 for “Pretrained Seq (Augmented)” versus
“Pretrained Seq (No Augs)”. On the one hand, almost all real-
world segmentation accuracy values have been boosted, which
means that with the augmented model in such unseen domain,
the predicted segmentation map can be more reliable and most
traversable areas (over 94% at the pixel level) can be success-
fully detected. On the other hand, both CV values have been
decreased by a large extent, which further demonstrates that
the accuracy gaps between RGB-D sensor systems have been
reduced. In summary, the two-level evidence indicates that the
semantic traversability perception approach has been signifi-
cantly robustified.

We have also collected the accuracy data (tPA values) of
depth-based segmentation approaches including 3D-RANSAC-
F [15] and FreeSpaceParse [19], by projecting the 3D informa-
tion into the RGB image view for pixel-aligned comparison.
For Smart Glasses, since the original depth map delivered by
RealSense R200 is sparse and noisy, we have implemented a
guided filter [16, 68] to eliminate small segments, fill invalid
holes and enhance the depth image. Otherwise, the depth-based
approaches will yield ill-posed detection results. For other per-



Research Article Applied Optics 9

Table 4. Accuracy analysis using Intersection-over-Union (IoU).
“Mean-17”: mean IoU value of 17 navigation-related classes, “Mean-27”: mean IoU value of all 27 classes used for training.
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ENet [28] 25.0% 71.2% 0.1% 39.2% 82.5% 57.2% 12.4% 33.0% 27.8% 35.1% 76.0% 32.6% 2.7% 96.4% 81.1% 52.9% 51.0% 33.6% 45.6%

LinkNet [29] 34.6% 74.4% 20.6% 45.1% 84.0% 58.2% 19.7% 37.1% 33.5% 37.7% 78.2% 42.3% 16.2% 97.2% 83.3% 54.9% 51.9% 39.4% 51.1%

Seq ERF-PSPNet 38.2% 76.4% 36.5% 51.9% 85.6% 63.8% 30.5% 43.1% 41.6% 47.2% 80.6% 48.1% 40.4% 96.6% 83.9% 59.6% 59.1% 48.4% 57.3%

4×2 Hier ERF-PSPNet 35.6% 76.1% 42.1% 50.7% 85.2% 62.1% 32.8% 43.1% 40.9% 48.0% 80.0% 47.1% 34.1% 96.5% 83.6% 59.3% 57.8% 47.1% 57.8%

3×3 Hier ERF-PSPNet 36.6% 76.2% 36.3% 52.0% 85.8% 64.5% 37.4% 42.7% 41.9% 49.8% 80.4% 47.1% 40.9% 96.5% 83.8% 58.9% 58.6% 48.1% 58.2%

Pretrained Seq 37.1% 75.9% 39.8% 52.8% 85.9% 65.1% 36.0% 42.9% 42.9% 47.6% 80.5% 49.9% 40.5% 96.5% 84.1% 60.1% 60.0% 48.8% 58.7%

Without Augs 38.2% 75.0% 31.7% 50.5% 85.2% 61.7% 30.0% 42.9% 40.1% 45.1% 79.9% 49.0% 35.8% 96.5% 83.9% 58.8% 60.6% 46.4% 56.8%

Table 5. Real-World robustness analysis using Pixel-Wise Accuracy (PA).
“mPA”: Mean Pixel-wise Accuracy for segmentation of road, sidewalk and curb, “tPA”: Pixel-wise Accuracy for segmentation of
traversable areas merged from road, sidewalk and traversable classes, “CV”: Coefficient of Variation.

Approach Metric Smart Glasses [1] pRGB-D Sensor [20] RealSense D435 [53] ZED Mini [54] CV

ENet [28] (Augmented)
mPA 57.3% 72.3% 70.1% 70.1% 8.8%

tPA 91.8% 93.9% 93.0% 93.0% 0.8%

LinkNet [29] (Augmented)
mPA 55.5% 76.4% 70.0% 73.2% 11.6%

tPA 92.6% 95.3% 94.3% 94.8% 1.1%

Seq (Augmented)
mPA 69.5% 80.8% 80.0% 79.6% 5.9%

tPA 96.9% 97.0% 96.2% 96.4% 1.2%

Hier 4×2 (Augmented)
mPA 73.8% 78.3% 75.2% 73.8% 2.4%

tPA 96.8% 93.7% 92.8% 90.4% 2.5%

Hier 3×3 (Augmented)
mPA 72.7% 79.3% 78.9% 72.4% 4.3%

tPA 97.6% 93.1% 94.7% 88.1% 3.7%

Pretrained Seq (Augmented)
mPA 78.1% 81.4% 77.4% 77.4% 2.1%

tPA 95.4% 94.5% 95.5% 94.1% 0.6%

Pretrained Seq (No Augs)
mPA 60.8% 79.1% 69.5% 75.3% 9.7%

tPA 88.7% 94.3% 91.7% 92.6% 2.2%

3D-RANSAC-F [15] (depth-based) tPA 70.6% 84.0% 92.6% 90.1% 10.1%

FreeSpaceParse [19] (depth-based) tPA 87.1% 66.5% 86.3% 80.9% 10.3%

ception systems, we directly use the original depth map with-
out any post-processing. It turns out that CV values obtained
with depth-based approaches are both higher 10.0%, which are
higher than all CV values obtained with CNN-based approaches
(see those computed from tPA values across systems in Table
5). This has numerically validated the generalization capacity
of SS-based traversability detection framework. Based on our
study, the research community should be motivated to revolu-
tionize traditional RGB-D sensory assistive technology by apply-
ing deep learning algorithms for unification and generalization
considerations.

F. Robustness to Changes of Sensorial Factors

Although our purpose is to robustify semantic perception and
shrink the performance gap between different systems, one
frequently-asked question is that which RGB-D camera sup-
ports the highest accuracy. To answer this question, we have
calculated the pixel-wise accuracy at different ranges taking
into account that short-range of ground area detection helps
to determine the most walkable direction [20, 40], while supe-
rior path planning could be supported by longer traversability
awareness [16]. Since the minimum detectable depth ranges of
these RGB-D sensors are different as discussed in Section 3B,

the experimental data are collected within 9 ranges: 1-2m, 2-3m,
..., 9-10m. As visualized in Figure 6 regarding the pixel-wise
accuracy of the critical traversable area parsing and the overall
accuracy recorded in Table 5, the semantic perception framework
yields the highest accuracy for traversability awareness with the
pRGB-D Sensor in a dominant part of situations, which is also
consistent on specific classes including roadways, sidewalks and
curbs.

We are very curious about why pRGB-D Sensor delivers the
best performance. Generally, the accuracy will be highly related
to the domain style of images used for training. This might be
one reason, but the pRGB-D Sensor integrated ZED, while ZED
and ZED Mini share similar image style yet distinct performance.
More rationally speaking, our first observation is that the pRGB-
D Sensor has the better optical imaging performance with less
stray light as displayed in Figure 7 (see the sky region). The sec-
ond hypothesis is regarding images from VISTAS dataset [7], the
distribution of the focal length is mostly concentrated in the 25-
35mm range and the peak is around 29mm (35mm equivalent).
The focal lengths of pRGB-D Sensor (ZED integrated), ZED Mini
and RealSense D435 are 27.9mm, 26.8mm and 19.3mm, respec-
tively. Accordingly, there is nearly an order of magnitude more
images involved in training stage which shares the similar focal
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Fig. 6. Comparison of the pixel-wise accuracy values of traversable area parsing at different ranges across perception systems
produced by (a) our sequential ERF-PSP model trained without data augmentations, (b) our model trained with all data augmenta-
tions, (c) 3D-RANSAC-F [15] and (d) FreeSpaceParse [19].

length to the images captured by a ZED-based prototype (pRGB-
D Sensor), than ZED Mini or RealSense D435. This indicates
that even though a group of geometric data augmentations have
already be performed, the unaltered focal length still has a great
influence on semantic prediction. The underlying rationale is
that, contextual information of traversability-related categories
should be more consistent in 3D space, while 3D-to-2D imaging
process must satisfy some strict projective relationship. For ex-
ample, the image of an object projected by a long-focal-length
camera in the far distance could be exactly the same as the one
captured by a short-focal-length at a short distance [69]. Such in-
distinguishability may bias the network in predicting semantics
of traversability. The essential role of data augmentations re-
garding focal length have also been investigated in the research
line of fish-eye image segmentation [22]. In this sense, future ef-
forts would be dedicated to chaining scene depth inference and
embedding camera’s intrinsic parameters such as focal length
in the semantics/depth prediction models. For Smart Glasses,
the major problem is that it suffers from motion blur, rolling
shutter artifacts and bluish color deviation as shown in Figure 7.
Still, after applying a batch of data augmentations, the perfor-

mance boosts of SS with Smart Glasses can be clearly observed
in Figure 6. The main insight gained from our experiments is
that in essence, the gap between the concepts of “accuracy” and
“robustness” is not only a matter of training images or CNN
learning capacity, but also a matter of data diversity and optical
characteristic.

More importantly, it is consistent that with data augmenta-
tions, the MV metric at the detectable ranges of these systems
has been improved as illustrated in Figure 6(a)(b), which demon-
strates that the robustness has been enhanced in the real world.
Especially, CV metric can be used to describe the performance
variation across systems beyond general robustness. Similarly,
by applying data augmentations, all CV values have been de-
creased regarding the pixel-scale segmentation of specific classes
including roadways, sidewalks and curbs. When comparing the
depth-based approaches with CNN-based approaches (see Fig-
ure 6(a)(b) versus Figure 6(c)(d)), we reach the same conclusions
as drawn in Section 4E: CNN-based approaches are significantly
more robust than depth-based approaches if they should be de-
ployed in various navigation assistance systems. In addition
to the robustness aspect, an issue we want to report is that no-
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ticeably, RealSense D435 suffers from low detection range and
accuracy using FreeSpaceParse as manifested in Figure 6(d). This
is due to the less reliable depth map at close ranges. One rep-
resentative example can be found along the fifth row in Figure
7(c)(f).

Figure 7 exhibits the montage of pixel-wise masks generated
by our approache, ENet, FreeSpaceParse and 3D-RANSAC-F.
Qualitatively, our approach not only yields more smooth, more
consistent and more complete segmentation at both close ranges
and long ranges, but also retains the outstanding ability to per-
ceive hazardous curbs within this unified perception framework.
In summary, semantic cognition of traversability has been en-
hanced with our augmented model, leading to the improvement
of accuracy and robustness on both numerical metrics and visu-
alization results.

G. Robustness to Changes of Environmental Conditions
To elaborate the effectiveness of data augmentations on the ro-
bustness to environmental factors, we present a set of compar-
isons of segmentation results for some extreme cases in our envi-
ronment in Figure 8. For example, the water hazards on the road,
the overexposure in the scenarios with high dynamic range of
illumination level, the unseen domain with a retrofitted car, and
the shadows can be very challenging for robust semantic percep-
tion. In Figure 9, we showcase cross-continent results for data
recorded not only around the Polytechnic School at University of
Alcalá in Madrid, but also in public spaces around Westlake, the
Yuquan Campus, the City College at Zhejiang University, and
Holley Metering Campus in Hangzhou. Diverse segmentation
masks with different illumination conditions (cloudy vs. sunny),
different aspect ratios (4:3 vs. 16:9) and different viewpoints
(from roadways, sidewalks and off-roads) have been combined
and visualized. In summary, it can be seen in all qualitative
examples, our model delivers impressive segmentation results
even under challenging conditions thanks to its inherent robust-
ness and the extremely positive effect of data augmentations in
robustifying semantic perception across all kinds of domains
and RGB-D observations.

5. CONCLUSION AND FUTURE WORK

Semantic Segmentation (SS) stands out as an effective approach
to unify different detection tasks. This paper considerably ex-
tends the previous field navigation-dedicated work [5] by cov-
ering the detection of curbs and traversable areas in a semantic
traversability perception framework. We have systematically
studied the robustness of Convolutional Neural Network (CNN)-
based semantic segmenters. After designing a cluster of efficient
deep architectures, data augmentations have been combined to
enhance the model such that it will be ready to produce accurate
segmentation across real-world navigation assistance domains.

In summary, the sequential ERF-PSPNet achieves the highest
segmentation accuracy while the 3×3 hierarchical design reaches
the fastest speed at efficient resolutions for wearable semantic
cognition. Regarding the cameras, the customized pRGB-D
Sensor helps to attain the best performance of traversability
awareness in a dominant part of conditions and ranges, while
the pair of Smart Glasses offers an optimal light-weight solution
for wearable navigation assistance.

In our research line, the unification and generalization ca-
pacity of SS-based semantic perception have been validated on
numerical metrics and visualization results. Based on this com-
parative study, entrepreneurs and roboticists can answer justifi-

ably that the robustness to diverse environmental and sensorial
factors is reachable, while researchers and engineers should be
encouraged to apply deep learning-based segmenters in upper-
level applications assisting semantic cognition of robotics and
vulnerable road users.

Future work will be contributed to the continuous improve-
ment of our wearable navigation assistive framework towards
long-term autonomy. We will resort to relevance-aware loss
functions [33, 70] to boost the segmentation performance on less
frequent yet safety-critical semantic categories. Another promis-
ing direction is to include depth-wise separable convolution as
an additional shallow branch for spatial fine-tuning [34] to ex-
tend the use of our networks to even wider variety of application
scenarios. We also have the intention to adapt the semantic cog-
nition to RGB-D input, as well as omni-directional imagery by
using a Panoramic Annular Lens (PAL) system [71], beneficial
for eliminating the blind spot and expanding the field of view to
360◦ for real-world surrounding perception. To realize reliable
segmentation in non-ideal and even adverse conditions, we aim
to reduce the gap between conventional and omni-directional
imaging-based street scene parsing, by exploiting the Panoramic
Annular Semantic Segmentation (PASS) [8] dataset, as well as
to bridge the daytime and nighttime image domains by using
the ZJU driving dataset [72]. We will also widen the real-time
performance comparison on newly released modules like Coral
Dev Board and Nvidia Jetson Nano.
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