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Abstract. The goal of this work is to evaluate the task of autonomous
driving in urban environment using Deep Q-Network Agents. For this
purpose, several approaches based on DQN agents will be studied. The
DQN agent learn a policy (set of actions) for lane following tasks using
visual and driving features obtained from sensors onboard the vehicle
and a model-based path planner. The policy objective is to drive as fast
as possible following the center of the lane avoiding collisions and road
departures. A dynamic urban simulation environment will be designed
using CARLA simulator to validate our proposal. The results show that
a DQN agent can be a successful technique for self-driving a vehicle in a
urban environment.

Keywords: Autonomous Driving · Reinforcement Learning · Convolu-
tional Neural Network · Deep Q-Network Agent · CARLA Simulator

1 INTRODUCTION

In recent years, autonomous driving plays a pivotal role to solve traffic and trans-
portations problems in urban areas (traffic congestions, accidents, etc) and it is
going to change the way of travelling in our world in the future [1]. In the last
decade, various challenges, such as the well-known DARPA Urban Challenge and
the Intelligent Vehicle Future Challenge (IVFC) have proven that autonomous
driving can be a reality in the near future. The teams participating in these
events have demonstrated numerous technical frameworks for autonomous driv-
ing [2-5]. Nowadays, most self-driving vehicles are geared up with multiple high-
precision sensors such as LIDAR and cameras. LIDAR-based detection methods
provide accurate depth information and obtain robust results in location, ob-
ject detection and scene understanding [6] while camera-based methods provide
much more detailed semantic information [7]. Lately, Reinforcement Learning
(RL) have been used to solve Markov Decision Problems (MDPs). This method
tries to calculate the optimal policy of an agent to choose actions in an envi-
ronment with the goal of maximize a reward function. The results obtained to
solve computer games or simple decision-making system have been very success-
ful [8,9]. Regarding to autonomous driving, recently, Deep RL approaches have
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been developed to learn how to drive using sensory system onboard the vehicle
[10, 11].

In this paper, we are going to focus our study in the performance of Deep
Q-Network agents for autonomous driving. The goal is to follow a route as fast
as possible avoiding collisions and road departures in a dynamic urban simu-
lation environment. The discrete nature of DQN makes a complex tune for a
continuous problem like self-driving, due to the infinite possibles of movement
by the car in each step. Studying DQN and the obtained results, we will be able
to discuss whether this algorithm is the right one for this navigation purpose.
On the other hand, an important part of this work, is the simulator that will be
used, CARLA Simulator [12]. CARLA is a hyper-realistic simulator that helps
in the development of navigation techniques and in the exportability of the sim-
ulated models to real systems. In addition, CARLA provides a bridge with ROS
[13] for standardization, and a PythonAPI for easy programming. Both modules
allow an easy connection between simulation and the algorithms implemented
to control the vehicle. Finally, although working with a real vehicle is not the
objective of this work at the moment (safety matters prevent these tests from
being performed in real environments without a previous and exhaustive simu-
lation stage), our final goal is that the developed control can be exported to our
robotic platform.

2 RELATED WORK

In the last years, several notable approaches to solve autonomous driving chal-
lenge have been proposed. These approaches can be classified in three main types:
classical or mapping-based, imitation learning (IL) and reinforcement learning
(RL).

a) Classical methods: Classical autonomous driving systems usually use
advanced sensor for environment perception and complex control algorithms for
safety navigation in complex scenarios. Typically, these frameworks use a mod-
ular architecture where individual modules process information asynchronously.
The sensing module captures information from the surroundings using differ-
ent sensors such cameras, LiDAR, GPS, IMUs, etc. Perception module plays a
high-priority role and is responsible for calculating the position of the vehicle
and recognizing and detecting the objects present in the surroundings of the
environment. Decision module relies on perception module. Once the module
understands the behaviour of the scene, it makes the appropriate decision ac-
cording to the external conditions and the established objective [14,15].

b) Imitation learning: This approach tries to learn the optimal policy by
following and imitating the expert’s decisions. This way, an expert (typically a
human) provides a set of driving data [15,16]. Using these labelled data, the driv-
ing policy (agent) is easy to train in a supervised learning. The main advantage
of this method is its simplicity and it achieves very good results in end-to-end
applications. On the other hand, its main drawback is the difficulty of imitating
every potential driving scene being unable to learn behaviors that have not been
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provided. This drawback causes this approach can be dangerous in some real
driving situations that have not been observed.

c) Reinforcement learning: This approach is a type of machine learning
technique that enables an agent to learn an interactive environment by trial
and error using feedback from its own actions and observations.This approach
have been successfully tested for solving Markov Decision Problems (MDPs).
In recent years, it has been combined with deep learning techniques and have
proved its potential to solve autonomous driving problems such as decision mak-
ing and planning . Deep Reinforcement Learning (DRL) algorithms include:
Deep Q-learning Network (DQN), Double-DQN, actor-critic (A2C, A3C), Deep
Deterministic Policy Gradient (DDPG) and Twin Delayed DDPG (TD3). All
these algorithms have been used to perform autonomous driving tasks, obtain-
ing promising results [18-22].

3 FRAMEWORK OVERVIEW

This section shows the proposed framework for autonomous driving based on
DRL (Fig.1). This approach is based on [18] where a hybrid of a model-based
planner and a model-free DRL agent is proposed. The general architecture is
based on CARLA simulator, which provides a hyper-realistic and dynamic ur-
ban simulation environments. CARLA provides a powerful API that allows the
users to control all aspects related to the simulation and permits to configure di-
verse sensors for environment perception (cameras, LiDAR, GPS, etc). This way,
CARLA provides environment and ego-vehicle data. With this data (monocular
camera image, and vehicle position and speed), it is possible to obtain visual and
driving features. This two set of features can be introduced in a Deep Learning
Reinforcement Agent to generate control commands (actions).

4 METHOD

Autonomous driving tasks can be modeled as a Markov Decision Process (MDP)
and a great amount of reinforcement learning algorithms have been developed
recently for solving MDP [10,19]. Therefore, Our approach aims to develop a
DRL agent that generates autonomous vehicle control actions.

4.1 MDP formulation

A MPD consists of an agent that observes the state (st) of the ego-vehicle (en-
vironment state) and generates an action (at). This causes the vehicle to move
to a new state (st+1) producing a reward (rt = R(st, at) based on the new ob-
servation. A Markov decision process is a 4-tuple (S,A, Pa, Ra) where the goal
is to find a good ”policy”, that is, a function π(s) that the decision maker will
choose when is in state s.

a) State space (S): This term refers the information which is received from
the environment in each algorithm step. In our case, we model st as a tuple
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Fig. 1. Framework overview

st = (vft, dft) where vft is the visual features vector associated to the image It
or a set of visual features extracted from the image, typically a set of waypoints
wt obtained using a model-based path planner vft = f(It, wt). dft is the driving
features vector consisting of an estimation of vehicles speed vt, distance to the
center of the lane dt and angle between the vehicle and the centre of the lane φt,
dft = (vt, dt, φt). Fig.2 shows the state space where the waypoints are published
by CARLA from the planning module.

b) Action space (A): To interact with the vehicle available in the simulator,
the commands for throttle, steering and brake must be provided in a continuous
way. Throttle and brake range is [0,1] and steering range is [-1,1]. Therefore,
at each step the DRL agent must publish an action (at) = (acct, steert, braket)
with the commands between the commented ranges.

c) State transition function (Pa) is the probability that action a in state
s at time t will lead to state st+1 at time t+1. Pa = Pr(st+1|st, at).

d) Reward function R(st+1, st, at): This function generates the immediate
reward of translating from st to st+1. The goal in a Markov decision process is
to find a good ”policy” π(s) = at that will choose an action given a state. This
function will maximize the expectation of cumulative future rewards.

E =

∞∑
t=0

γtR(st, st+1) (1)

4.2 Deep Q-Learning algorithm for Reinforcement Learning

In recent years, there have been important advances in machine learning. Re-
inforcement Learning techniques have proved that an agent can learn robust
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Fig. 2. State space.

policies in an interactive environment. In this work we are going to focus our
effort in DQN [23] to solve our MDP problem.

Q-Learning. This process creates an exact matrix for the agent to maximize
its reward in the long run. This approach is only practical for restricted envi-
ronment, with limited space for observation, due to a high number of states or
actions causes a wrong algorithm behaviour. Q-learning is an off-policy, model-
free RL based on the Bellman Equation.

The goal of Q-learning is to maximize the Q-value though policy iteration,
which runs a loop between policy evaluation and policy improvement. Policy
evaluation estimates the value function V (equivalent to the referenced reward
function (R)) with the greedy policy which has been obtained from the last
policy improvement. On the other hand, policy improvement updates the policy
with the action that maximize V function for each of state.

Q(st, at) = Q(st, at) + α[rt+1 + γmaxargQ(st+1, at)−Q(st, at)] (2)

Deep Q-Learning. Q-learning is lack of generality when space of observation
increases. Imagine one situation with 10 states and 10 possible actions, we will
need a 10x10 Q-matrix. If now the number of states increases to 1000, the Q-
matrix increases too. To solve this issue, Deep Q-Learning get rid of the two-
dimensional array by introducing a Neural Network.

So now, DQN estimates the Q-value by using a Neural Network, where the
state is used as input, and the output is the corresponding Q-value for each
action. The difference between D-Learning and Deep Q-Learning lies in:

yj = rj + γmaxargQ(φj+1, a
′; θ−) (3)
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Where φ is equivalent to the state s, while the θ stands for the parameters in
the Neural Network. A detailed explanation of DQN algorithm can be found in
[21].

5 DEEP Q-NETWORK AGENTS

We have developed various agents that cover a wide variety of model architec-
tures for the Deep Q-Network agents. Models will be first developed in simulation
for safety reasons. Therefore, the agent will interact with CARLA [24] and the
code will be programmed in Python based on several open-source RL frameworks
[25, 18] (see Fig.3) .

Fig. 3. Reinforcement Learning architecture DQN-based.

CARLA is an hyper-realistic simulator which provides a complete set of maps,
in addition to the possibility of creating your own maps and import them into
it. Fig. 10 depicts the map corresponding to ”Town01”. CARLA also provides a
PythonAPI from which different actors (vehicles or pedestrians) in the simulator
can be created and controlled by an external python agent. Different types of
sensors are allowed to be attached to these actors, many of them will be used in
this work, such as collision sensor, odometry, or camera image, being this last
the most important for our application.

The cameras can be fixed to a vehicle using its centre as reference point,
so that is placed in a position relative to the vehicle’s position by using a set
of coordinates (x, y, z, pitch, yaw and roll). Moreover, there is a fourth post-
processing effect available for some specific cameras like raw depth or semantic
segmentation.
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Using this PythonAPI, points belonging to the map can be obtained easily,
as well as actual vehicle position and speed. These points are called spawn points
and they are determined by how the map was created. But what is really impor-
tant is that CARLA also provides waypoints, which do not depend on how the
map was built, and can be used for navigation. The simulator contains a path
planning algorithm, both global and local. The global route planner is based on
A* algorithm, and is able to built a route between two map points and returning
the set of waypoints that joins them, forming a path. Furthermore, thanks to
the debugging tools, this path can be drawn in CARLA scene as shown in Fig.
4.

Fig. 4. Route with waypoints.

With all these facilities, some parameters have to be determined for the cor-
rect Trajectory with waypoints

a) Reward function. The proposed architecture obtains a driving features vec-
tor dft = (vt, dt, φt) from the simulator. This vector is composed of the velocity
of the vehicle in the direction of its heading vt , the distance to the center of the
lane dt and the angle regarding the lane direction φt. Considering that the ob-
jective is to go as fast as possible through the center of the lane without leaving
the lane and avoiding collisions, the reward function rewards the longitudinal
velocity and penalize the transverse velocity and divergence from the center of
the lane. This approach is similar to the proposal made in [torcs].

R =
∑
t

|vtcosφt| − |vtsinφt| − |vt||dt| if car in lane (4)
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R = −200 if collision or lane change or roadway departure (5)

b) Control commands (actions). CARLA needs control commands for steer-
ing [-1,1] and throttle [0,1]. Brake has not been implemented in this first version
because the environment is free of obstacles and the regenerative braking of the
vehicle is enough to stop the vehicle. The DQN policy allows generating dis-
crete actions, so it is necessary to simplify the continuous control of actions to
a discrete control. Taking this into account, the number of control commands
has been simplified to a set of 27 discrete driving actions, discretizing steering
angle and throttle position in an uniform way. Table 1 shows the set of control
commands where there are 9 steering wheel positions and 3 throttle position.

Table 1. Policy network. 27 classes.

Control commands

Classes Steering Throttle

27 -1,-0.75,...0.75,1 0,0.5,1

5.1 DQN ARCHITECTURES

This section explains different implemented model architectures. The main dif-
ference among them are the features extraction methods. All agents have been
programmed using Keras [26], which is a high-level neural networks library, that
runs on the top of TensorFlow (open source platform for machine learning) [27].

DQN-CNN Agent. DQN-Convolutional Neural Network is an ambitious agent
model, as it covers the whole problem straightforwardly, as shown in Fig. 5. This
agent takes data from an image as visual features vft = It and a set of parameters
obtained from the vehicle as driving features dft = (vt, dt, φt). Camera image is
connected into a CNN and its output feeds a Fully-connected module, whereas
the driving features are directly connected into the Fully-connected module.
What is expected to have as CNN output are the road features at that moment,
serving as a kind of waypoints for the training of the DRL. Then, both road
and driving features are concatenated and introduced on set of Fully-Connected
layers from which final action would be obtained. The CNN consist of three
convolutional layer with 64 filters of size [7x7], [5x5] and [3x3] respectively. All
layers use RELU as activation function. Each layer is followed by an average
pooling. The output of the last convolutional layer is flattened and concatenates
with driving features vector and fed into 2-fully-connected layers with 300 and
600 hidden units respectively. Finally a classification layer with linear activation
outputs the predicted Q value.
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Fig. 5. DQN-CNN Agent.

DQN-FC agent. DQN-Fully-Connected agent differs the previous one in the
CNN suppression. In this case, the input of the agent are the waypoints provided
by the global planner of CARLA. Once A* algorithm is called, the complete path
can be used, so only the next 14 waypoints from actual vehicle position will be
introduced into the Fully-connected layers, so as the car moves the waypoints
that feed the network will be updated accordingly. Although global planner’s
waypoints contain 3 position and 3 rotation components, only X and Y values
will be used (referenced to the local map of the vehicle). This is due to only
variations regarding the lane plane are taken into account. As in the previous
agent, this vector will be concatenated with the driving features vector into the
Fully-connected layer in order to obtain the action to take (see Fig.6).

Fig. 6. DQN-Fully-Connected Agent.
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DQN-Flatten-Image agent. This approach is built as simplification of DQN-
CNN agent and is based on converting the RBG image into a resized B/W image,
where the navigation path is segmented in a pre-processing stage, so that this
image is flattened and converted into visual features vector. The visual vector
is concatenated with driving features vector and this data is inserted into a
DQN-Fully-Connected agent (see Fig.7 ).

Fig. 7. DQN-Flatten-Image Agent.

DQN-PilotNet agent. Due to the really hard task of getting a good model
training the DQN-CNN agent, we decided to separate the problem into two
stages: the first one to obtain waypoints from the images and the second one to
train the DQN from the waypoints. This architecture was built with the main
objective of obtaining the waypoints through a CNN, but numerous networks
can be used for this purpose not being necessary to design an ad-hoc network
from scratch. A known network model that works with images is ”PilotNet” [28],
which was created with the purpose of obtaining the road angle and vehicle speed
from the track image. So, assuming a proper PilotNet behaviour, some necessary
changes in its architecture are made in Python, and thanks to ”Tensorflow” and
”Keras” libraries, a well trained model is achieved (see Fig.8)

A PilotNet architecture as shown in Fig.9 is able to return the same waypoints
that CARLA would provided thought PythonAPI from its planner. This implies
having an independence of third party algorithms to obtain the waypoints and in
a synchronized way with the DRL Net. Obviously, to work with this network it is
necessary a pre-training stage with data recorded from the simulator. However,
this is much simpler and shorter than a complete training for the DQN-CNN
agent. The remaining agent is identical to the one implemented in DQN-FC
agent.
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Fig. 8. DQN-PilotNet Agent.

Fig. 9. CNN’s architecture based on PilotNet modified to obtain waypoints to feed
the Deep Reinforcement Learning training. A 160x60 RGB image is provided to the
PilotNet to return a (15, 2)-shaped waypoint vector.
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6 RESULTS

To test the performance of the implemented DQN Agents, we compare results
with other navigation modes such as manual driving (hand-crafted) and au-
tonomous driving using a Classical Waypoint Tracking Controller based on the
LQR [29].

The experiment carried out consist on learn how to drive in a trajectory
where a origin-destination pair is selected from the ”Town01” of CARLA so
that the trajectory includes straight sections and curves to the left and right
as it is shown in Fig. 10. All the training and testing experiments have been
developed using a PC (Intel Core i7-9700, 32GB) with Nvidia GeForce RTX
2080 and using CUDA-based GPU.

Fig. 10. Navigation-trajectory on CARLA’s Town01 scene obtained by Global Path
Planning A* algorithm provided by Carla PythonAPI.

The following steps have been developed in the training process:
1) At the beginning of each episode, the CARLA Python-API generates a

path using a global planner (origin, destination and waypoints).
2) Each timestamps (step), the corresponding visual and driving features

vector are obtained, which are introduced in the DQN agent.
3) In each timestamp of the DQN training process, the DQN weights are

updated, the reward is calculated and the Q matrix is updated.
4) The episode ends when the destination is reached or a collision or lane

departure occurs.
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5) Throughout the process, the accumulated reward is calculated. This value
will be used to determine which episode has made the best trajectory (best-
reward-episode).

6) Training ends when the maximum number of episodes is reached.

Table 2 shows the results obtained in DQN agents training process. The
number of training episodes is 20,000 with the exception of the DQN-CNN where
it has been expanded to 120,000. This is so because we take RGB images directly
as input instead of waypoints, which supposes a much larger order of data, and
consequently, requires a higher number of iterations for the system to converge.

Table 2. Training performance

Model Training Episodes Best Episode

DQN-FC 20000 8300
DQN-FLATTEN-IMAGE 20000 16500

DQN-PILOTNET 20000 13200
DQN-CNN 120000 108600

As you can see, all agents reach the final destination in the established
episodes, although this does not guarantee that the performed trajectory is
adequate. Those DQNs that reached their best-reward-episode earlier (shorter
learning time) are DQN-FC and DQN-PILOTNET with 8300 and 13200 episodes
respectively. These two models are the ones that use a set of waypoints as vi-
sual feature vector as input to the agent’s full-connected layer. The other agent
that also reaches its best-reward-episode before reaching the maximum number
of episodes is the DQN-Flatten. In this case the RGB image information is re-
duced, converted to b/n and flattened. Finally, the most complex model, the
DQN-CNN requires many more episodes to achieve a correct result. In this case
it has taken 108,600 episodes. To summarize, those DQN agents with a simpler
features learn to drive much faster than those with more complex visual features.

Once the training process of the different DQN agents is completed, the
objective is to compare how well the trajectory performed by each one fits to
an ideal driving following the center of the lane (ground-truth). To do this, the
different DQNs will be compared with each other and also with manual driving
(hand-crafted) and an autonomous driving method using by the authors in its
real prototype [28,29].

Fig.11 shows the trajectories followed by the different DQN agent as well as
the manual and classical models. As can be seen, all approaches are close the ideal
path and manage to reach the final destination. In general terms, it can be seen
that better results are obtained using classical methods. DQN-based approaches
show greater oscillations when following the ideal path and present higher errors
compared with the classical approach. DQN-CNN and DQN-Flatten agents that
use an image as visual feature vector obtain a trajectory with more oscillation
and move further away from the ideal path. On the other hand, DQN-FC and
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DQN-Pilotnet follow a trajectory that is much closer to the ideal and have hardly
any oscillations.

To get a more quantitative idea of errors made with respect to the ground-
truth (obtained interpolating by means of a spline-line the route points provided
by CARLA) we calculate the mean square error (MSE) and the maximum error
along the whole path. Numbers are depicted in Table 3.

The best result are obtained by Waypoint Tracking Controller based on LQR
Optimal Controller with an MSE of 6 cm, being the maximum distance to the
ground-truth 0.74 m in the middle of the first curve.

DQN-FC and DF-Pilonet, which use waypoints as inputs present an small
error ranging from MSE=0.21 m to MSE=0.33 m. These two agents correctly
follow the ideal path in straight sections, but in curves they have maximum errors
of 1.32 m and 1.72 m respectively. With these errors and taking into account the
lane width is 3.5m both models model can be applied for self-driving a car.

On the other hand, DQN-Flatten and DQN-CNN present higher errors, rang-
ing from MSE=0.64 m for DQN-Flatten to MSE=0.83 m for DQN-CNN. Al-
though the mean error may be acceptable, the maximum error reach 3.15 m and
2.15 m on curves, which are unacceptable because generates road departures.

It must be remarked that the manual driving gets a MSE=0.4 m and a
maximum error in curves of 0.74 m. In consequence, if we compare autonomous
driving behaviours with the performed by a human errors would be lesser.

Fig. 11. Trajectories-comparison.

Summarising, although all the implemented agents have reached the desti-
nation, it is observed that the agents that use directly images as inputs obtain
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Table 3. Lateral Mean Square Error.

Model Mean Square Error Maximum Error

CLASSIC CONTROLLER 0.06 m 0.74 m
MANUAL CONTROL 0.40 m 1.80 m

DQN-FC 0.21 m 1.32 m
DQN-PILOTNET 0.33 m 1.72 m

DQN-FLATTEN-IMAGE 0.64 m 3.15 m
DQN-CNN 0.83 m 2.15 m

worse results (greater errors following the center of the lane) than those that
work directly with waypoints obtained from a external global planner or gen-
erated from pre-processing of the images using a CNN. This is due to work
with images is more complex (there are more inputs to the neural network) and
requires much more agent training time to obtain similar results.

7 CONCLUSIONS

In this work, an approach for integrating some Deep Reinforcement Learning
algorithms into a navigation system was proposed, more specifically DQN-based
algorithms. In spite of the results shown in previously section where each pro-
posed model is able to follow a certain trajectory to a greater or lesser extent,
DQN algorithm presents several limitations for this purpose.

One of them is the real difficulty to tune the necessary outputs of the al-
gorithm, as well as its discrete values related to the actions to take by the
simulated car, to get a model that performs a complete trajectory. This is due
to the discrete character of the DQN algorithm itself. Several factors depends
on the amount of selected classes as shown in Table 1. The higher the number of
actions, the higher the training time of the model anf the better the performed
trajectory. This parameter depends very much of the map where the vehicle has
to travel.

Other limitation is the training time, controlled by Epsilon parameter and
that decays as training progresses. Epsilon decay selection establishes the time
from which a valid model can be obtained, and how good it will be. Smaller
decay values causes fewer training times but worse models, and vice versa.

Finally, the worst limitation found in DRL algorithms is the huge training
time for a complete online training like was described with DQN-CNN Agent.
Each test involves a long waiting time to get a model, which can or cannot
work. DQN-PilotNet Agent was built in order to solve the large DQN-CNN
training times by including a pre-trained neural network, as explained above,
that decouple the features extraction in two steps. According to the results
achieved by this agent, we can claim that including the modified PilotNet is a
good practical solution for our application.

Despite the above difficulties, simulated trajectories has been carried out,
unlike many of the articles in the state of the art. These results are promising,
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since even though DQN is a discrete algorithm, the final objective of the work
has been achieved, which was that a car could learn by itself how to follow a
trajectory on a urban map in simulation, efficiently and in a safety way.

The reported results leaves the door open to the implementation of a contin-
uous Deep Reinforcement Learning algorithm to solve the limitations observed
in the DQN, with the idea of reaching better models with shorter training times.
Another future work is to export our best simulated models to our real car
prototype to really check the potential of these DRL techniques.
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