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Elena López-Guillén, Javier Araluce, Rodrigo Gutiérrez, and Miguel Antunes

Electronics Department, University of Alcalá (UAH), Spain,
javier.egido@uah.es, cram3r95@gmail.com, {luism.bergasa, rafael.barea,

elena.lopezg, javier.araluce, miguel.antunes}@uah.es, res.rodry@gmail.com

https://www.robesafe.uah.es/

Abstract. This paper presents a real-time 3D Multi Object Detection
and Tracking (DAMOT) method proposed for the UAH autonomous
electric car. It allows the vehicle to recognize 360 degrees surrounding
objects and uniquely identify them to be able to follow their trajectory in
scene by only receiving a 3D point cloud through ROS framework. First,
we describe our proposal of 3D object detector, based on PointPillars
[1], processing LiDAR data to locate objects in space obtaining their di-
mensions and location. Secondly, we use BEV-MOT [2], our Multi-Object
Tracking technique in order to uniquely identify each object over a Bird’s-
Eye View (BEV) through a combination of 2D Kalman filter and Hun-
garian algorithm, allowing the ego-vehicle to follow surrounding objects
trajectories. A comparison of the performance of our proposal with other
state-of-the-art methods is carried out applying KITTI-3DMOT evalua-
tion tool extracted from AB3DMOT [3] on KITTI [4] validation dataset.
Finally, we validate our DAMOT in several traffic scenarios implemented
in CARLA [5] open-source driving simulator by using AB4COGT tool,
designed by authors, studying its performance in a controlled but realistic
urban environment with real-time execution, providing several demon-
stration videos1.

Keywords: Real-Time, CARLA, LiDAR, 3D Multi-Object Tracking,
ROS, DAMOT, Autonomous Navigation

1 INTRODUCTION

Autonomous driving systems have to perform safe driving behaviours following
conventional traffic rules to achieve a programmed destination. When travelling
through this route many unforeseen objects may force the controller to react
to avoid fatalities. The reliability of the crash-avoidance system relies on the
performance of the environment detector and its ability to predict future sit-
uations. Detection and Multi-object Tracking (DAMOT) methods analyze an
object since its first detection to determine its future position, allowing the car

1https://cutt.ly/3rU113d

https://www.youtube.com/playlist?list=PLh_tHW0c4RjkNgV6jJt3K4F6efQ2XnEUw
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to act in consequence to avoid critical situations. The increase in object de-
tection performance has allowed to advance on MOT techniques, improving its
accuracy but carrying a high computational cost, making prohibitive its use in
real-time systems. Many different technologies have been designed to accomplish
an optimal environment detector following different approaches, based on differ-
ent benchmarks such as KITTI [4], which provides manual labeled data from
urban scenes taken from different cameras and LiDAR mounted on a vehicle.

Our proposed method applies PointPillars [1], a state-of-the-art 3D object
detector network with a striking performance, achieving accurate predictions at
a high frame rate taking advantage on GPU and 2D convolutions to process a
3D point cloud.

Our tracking module is formed by our BEV-MOT proposal [2]. It works
over a BEV and is composed by a 2D Kalman filter to predict vehicles position
between detection frames and Hungarian algorithm in order to associate pre-
dictions and detections, running traditional tracking techniques at high speed
without sacrificing precision.

Fig. 1: Architecture of our MOT proposal simulated in CARLA.

We propose to take advantage of the good processing ratios of PointPillars
3D objects detector and traditional tracking techniques to implement a real-
time 3D DAMOT able to be used in challenging urban traffic scenarios. The
architecture of our proposal integrated to CARLA driving simulator is shown
in Fig. 1, which receives a point cloud from ego vehicle and returns the tracked
objects around it at its current and future positions.
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2 Related Works

2.1 Vision-Only 3D Object Detection

3D scene understanding through RGB or RGB-D images is possible by process-
ing the information using Convolutional Neural Networks followed by applying
complex projection transforms as in [6], [7]. GPUs may be used to reduce compu-
tational cost, getting well processing time values. Minor pixel mistakes in image
detection may produce meaningful differences between estimated and reality
when the object is at a relevant distance, and detecting the object orientation
and depth is a difficult task.

2.2 3D LiDAR Object Detection

3D LiDAR sensors provide accurate 3D information, avoiding precision prob-
lems when positioning the objects in the three-dimensional space. In contrast to
vision-only detection, point clouds provided by LiDAR sensors are independent
from adverse weather or light conditions. LiDAR information must be precisely
enough to recognize the surroundings in the point cloud but it may not ex-
ceed the computational limits due to a excessive detail. Different ways has been
explored to develop object recognition using 3D information, such as LiDAR
clustering, reducing the complexity to 2D BEV [8], dividing the scene into 3D
voxels to apply 2D CNNs as PointPillars[1] or 3D CNNs [9], [10], or processing
the whole point cloud [11].

2.3 2D Multi-Object Tracking

2D tracking may be carried out on BEV or image frame. Despite of useful results
achieved by batch MOT works like [12], future information is not available when
applying tracking to real-time systems such as autonomous vehicles. Otherwise,
online 2D MOT traditional techniques make data association using Hungarian
Algorithms [13], [14], [15], and more recently Convolutional Networks to extract
object characteristics to avoid identity switching when crossing trajectories [16].
Bird’s eye view perspective prevents tracking system to experience object occlu-
sions, allowing for a better scene comprehension.

2.4 3D Multi-Object Tracking

3D MOT allows the system to estimate real velocity, undistorted by bi-dimensional
transformations, being able to perform predictions based on linear and angular
velocities and precise location and size information. The simplest but efficient
way to create 3D MOT is to extend 2D Kalman filter by adding a third dimen-
sion such as in AB3DMOT [3]. Other works apply simple 2D Kalman filter over
BEV and recover the height using different strategies [2], [17].
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Fig. 2: 3D DAMOT Proposed architecture.

3 Architecture

Our 3D DAMOT system is featured by a modular architecture where first of all
a 360o object detector by using a LiDAR sensor is applied. Following, a Kalman
Filter and Hungarian Algorithm based tracking approach over the BEV detected
objects is carried out. The Fig. 2 outlines the pipeline of our system. The input of
the 3D DAMOT consist of a LiDAR point cloud which feeds PointPillars [1] neu-
ral network, giving rise to the 3D bounding boxes of the most relevant obstacles
of the scene detected in the 360o surrounding of the vehicle. These detections are
projected to the road plane (BEV) and analyzed along with our BEV-MOT [2],
composed by a 2D Kalman filter, which predicts positions to associate the de-
tected items to previous trackers. Matched trackers update Kalman filter while
unmatched objects are processed by birth and death (B/D) module to create
new trackers for unmatched objects and delete old trackers for the unmatched
ones. All trackers make up the Kalman filter, that estimates the future position
of the detected objects to restart the cycle.

3.1 3D object detector

360 degrees surrounding objects are detected processing LiDAR point cloud data
with PointPillars[1] network. This end-to-end network analyzes the point cloud
by dividing it into vertical columns to process the data as a 2D pseudo-image to
take advantage of highly efficient 2D convolutions on GPU, avoiding hand tuning
parameters by learning by itself instead. It is trained using KITTI [4] tracking
dataset which provides 3D hand-labeled information of vehicles, pedestrians and
cyclists in urban environments.

In order to increase the performance of the object detector, several network
architectures have been trained for PointPillars, showing their results on the
ablation study carried out in 4.2.
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3.2 Multi-Object Tracking

Detected objects in a BEV have to be processed by our Multi-Object Tracking
module (BEV-MOT) in order to assign a unique identifier to distinguish it along
the covered path. Analyzing the objects contained in a scene is a difficult task
and has to be accomplished by dividing it into several modules, as seen in Fig.
2.

2D Kalman Filter. By using the constant velocity model, the future po-
sition of each tracked object is predicted in the BEV. Kalman filter is updated
when present frame objects are matched with current trackers or new ones are
created at each step. It also corrects the detected orientation to match it to the
assumed previously to avoid a 3D IoU reduction produced by flipping 180 de-
grees the orientation of the object. To get 3D IoU, height is recovered from the
detection module. Different future positions are predicted to calculate possible
collisions.

Hungarian Algorithm for Data Association. Detected objects in cur-
rent frame and predicted positions from past frame are matched applying the
Hungarian algorithm according to 3D IoU, recovering height information from
3D object detector, returning matched and unmatched objects and trajectories
to be managed by 2D Kalman filter and Birth and Death memory respectively.

Birth and Death Memory. B/D module handles unmatched trackers and
objects. When an unmatched object is detected several times (because it newly
appears on scene or it cannot be associated with a previously detected one)
exceeding Fmin threshold a new tracker is created. On the other hand, an existing
tracker is deleted (due to the object has abandoned the scene or it is associated
with a new one) when passed Agemax frames.

Matched Trackers. Trackers module manages all current trackers to cor-
rectly configure the Kalman filter according to the objects detected in the pre-
vious frame.

4 Evaluation

A previous performance evaluation has to be accomplished before to implement
a system in a real prototype. To carry out this evaluation on 3D DAMOT met-
rics two different validation ways have been followed: KITTI real and CARLA
simulated scenes.

4.1 3D DAMOT Evaluation Metrics

Traditionally DAMOT evaluation tools study the working behavior on bi-dimensional
plane, designed for 2D DAMOT on images. In order to know the performance of
our architecture we applied 3D DAMOT benchmark developed by AB3DMOT
[3] to analyze 3D IoU from detected and tracked objects with KITTI and CARLA
groundtruth. This tool applies traditional and integral metrics described follow-
ing.
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Traditional DAMOT metrics. Mainstream metrics applied to multi-object
tracking systems are extracted from CLEAR[18] DAMOT metrics like MOTA
(accuracy), MOTP (precision), Mostly-tracked trajectories, False-Negatives (FN),
False-Positives (FP), Precision, F1 score, Identity Switching (IDS), Fragmenta-
tions (FRAG, trajectory interruptions by false positives), and moreover. This
metrics analyze the performance of the DAMOT system at a specific score
threshold, not taking into account the confidence provided by the object de-
tector and possibly misunderstanding the capability of the method.

MOTP measures the precision by analyzing the total error in estimated po-
sition for each object and its ground-truth.

MOTP =
d

numgt
(1)

MOTA considers all error made by the system, false positives, false negatives
and identity switching.

MOTA =
FP + FN + IDS

numgt
(2)

where numgt is the number of ground truth objects in all frames.
Integral DAMOT metrics. To solve the problem presented by traditional

DAMOT metrics, AB3DMOT[3] propose two integral metrics, evaluating the
MOTA and MOTP of the tracking system at every score threshold.

AMOTA =
1

L

∑
{ 1

L , 2
L ,...,1}

(1 − FP + FN + IDS

numgt
) (3)

where L is the number of different recall values. FP, FN and IDS in AMOTA
are modified for each threshold value.

Similarly, AMOTP will be estimated by integrating MOTP along all recall
values.

4.2 Object Detector Evaluation in KITTI

Firstly, we modify the 3D object detector by modifying both PointPillars [1]
architecture and training steps and keeping the rest of the DAMOT architecture
unchanged. All training phases are accomplished by using KITTI [4] database.

In order to compare the results obtained with KITTI-3DMOT evaluation
tool we show the performance accomplished by FANTrack[19], which is given
in [3]. 3D DAMOT Evaluation parameters are shown in Table 1. To evaluate
PointPillars[1] architectures we extracted them from Second.Pytorch GitHub,
testing their results for given network weights, which are displayed as PP lite
and PP onestage, only improving MOTP results.

With the aim of enhance the performance we trained the PP architecture
during both 593,920 and 1,187,840 steps by using KITTI[4] tracking dataset for
car object class. Table 2 shows the results obtained by the explained detectors,



360o Real-Time 3D Multi-Object Detection and Tracking for AV Navigation 7

Table 1: 3D DAMOT evaluation tool default parameters

Parameter Value

Agemax 3
Fmin 1

IoU 0.1

writing the best result in black and the second in blue, using BEV-MOT [2]
as tracking module. It can be observed that PointPillars[1] architecture after
1,187,840 steps (PP Full steps) has the second best performance in 4 of 8 evalu-
ated parameters, improving the overall performance of other PP configurations
but no overcoming the [19] output. However, PP configurations run at least two
times faster, which is a critical factor in a real-time implementation.

Table 2: Ablation study replacing 3D Object Detector in KITTI-3DMOT eval-
uation tool in KITTI tracking validation dataset with BEV-MOT [2] tracking.

Method AMOTA AMOTP MOTA MOTP IDS FRAG FP FN

[20] Detector 31.37 64.29 62.38 68.26 1 24 1215 1894
PP Mid steps 26.14 63.41 57.54 75.12 122 182 4746 5353

PP lite 9.27 56.69 21.54 79.19 31 40 5635 13219
PP onestage 10.25 51.51 23.68 77.78 12 992 7881 10478
PP Full steps 27.30 63.45 59.26 75.24 131 186 4310 5364

4.3 CARLA: A Realistic Urban Environment Simulator

Despite impressive efforts made by AB3DMOT [3], where a tool for evaluating
3D DAMOT systems directly in 3D space is designed, it is based on KITTI
dataset [4], which provides prerecorded sequences over which the user cannot
interact with the environment. Moreover, these sequences are usually based on
common driving scenarios, such as a daily quiet street or a highway in which no
challenging traffic scenarios as pedestrian crossing, give way, etc. takes place.

Regarding levels of automation, neither any research nor industry organi-
zation has demonstrated a ratified testing methodology for L4/L5 (being iden-
tified the level 5 with a fully-autonomous navigation architecture, according to
J3016 SAE document [21]) autonomous vehicles. The reason is quite simple: even
though some regulations have been defined for these L4/L5 levels, simulation is
a critical aspect to build safe autonomous vehicles. Nevertheless, in spite of the
fact that current automotive companies are very good at testing the individual
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components of the navigation architecture, these tests are not powerful enough
to validate a fully-autonomous navigation architecture on the road, so there is
a need to figure out how to test intelligent vehicles full of advanced sensors and
sharing information among them [22].

In terms of 3D Multi-Object Detection and Tracking, the answer is quite
similar. Since the urban environment is highly complex, the whole architecture
and particularly the 3D DAMOT system must be tested in countless traffic
scenarios and environments, which would escalate the development time and
cost exponentially with the physical approach, either testing at the real-wold
or waiting for using new sequences of KITTI (recorded by a physical system),
not studying the global advantages and drawbacks of the DAMOT system. For
that reason, virtual testing (simulation) and an appropriate design of the traffic
scenarios are the keys to build robust and safe autonomous vehicles in the future,
as shown in [23]. Since the proposed 3D DAMOT architecture of this work is
open-source, we decided to validate the ability to detect and track the most
relevant objects around the vehicle in CARLA [5], an open-source hyper-realistic
autonomous driving simulator that offers an outstanding environment in terms
of perception, flexibility, traffic situations and real-time, which are key concepts
for our system.

CARLA is an open-source autonomous driving simulator implemented as
a layer over Unreal Engine 4 (UE4) [24]. This simulation engine provides to
CARLA an ecosystem of interoperable plugins, a realistic physics and a state-
of-the-art image quality. CARLA is designed as a server-client system so as to
support this functionality provided by UE4, where the simulation is rendered and
run by the server. The environment is composed of 3D models of static objects,
such as buildings, infrastructure or vegetation, as well as dynamic objects like
pedestrians, cyclists or vehicles. These objects are designed using low-weight
geometric textures and models though maintaining visual realism by making
use of variable level of detail and carefully crafting the materials. Moreover, one
of the main advantages when using CARLA is the possibility to modify in an easy
way the vehicle on-board sensors and their features in order to obtain accurate
data, the weather and even the possibility to create realistic traffic scenarios as
in Fig. 3.

In order to obtain the point cloud required by our 3D object detector, we
use the CARLA ROS bridge, associated to the CARLA simulator. The CARLA
ROS bridge is a ROS package that aims at providing a bridge between CARLA
and ROS (Robot Operating System [25]), sending the information captured by
the on-board sensors and other variables of interest to the vehicle in the form
of parameters and topics understood by ROS. In this paper we used the 0.9.9
version of CARLA in such a way the ROS bridge was configured according to
this version. In terms of the sensors perspective, the agent sensor suite can be
modified in a flexible way. Most common sensors in CARLA world are GPS,
RGB cameras and LiDAR (in addition to their corresponding pseudo-sensors,
such us the semantic segmentation and the ground-truth associated to the RGB
information of a camera). Since in this work our object detector is only LiDAR
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Fig. 3: CARLA driving simulator

based, we configure the sensor as shown in Table 3. Based on the bridge, the 3D
point cloud captured by the LiDAR is published in ROS format as PointCloud2,
with the X axe inwards, Y left and Z pointing up. Also an RGB camera sensor
is defined backwards the car to show the performance of the 360o 3D DAMOT
system to detect and track the detected objects all around the vehicle as seen in
Fig. 8b, but not interfering with the operation of our system.

Table 3: LiDAR configuration in CARLA simulator

Parameter Value

X (m) 0.0
Y (m) 0.0
Z (m) 2.5

Points per second 500.000
Upper FoV (o) 2.0
Lower FoV (o) -15.0

Rotation frequency (Hz) 20

As shown, CARLA provides a straightforward way to add or remove sensors
from the vehicle or even modify their parameters, to adjust the simulation to
the real-world as best as possible.

One of the best advantages of CARLA is the possibility to create ad-hoc
urban layouts, helpful to validate the 3D DAMOT system under different traffic
and weather conditions. CARLA Scenario Runner module can be downloaded
from CARLA GitHub, obtaining an execution engine for CARLA and traffic
scenario definition. These scenarios can be modified by editing an OpenSCE-
NARIO [26] script definition where town, vehicles, climate conditions and also
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driving behaviours are defined. Fig. 3 depicts an scenario on Town10 with the
ego vehicle and a predefined route, showing waypoints on a curved street to
achieve the destination point.

As previously explained, DAMOT evaluation in KITTI is mainly carried out
along daily streets where many cars are parked on the road, so it mostly evaluate
the system performance to track static vehicles when the main difficult is found
in dynamic obstacles, such as pedestrians, vans, trucks or cars. To achieve more
challenging situations we validated our DAMOT method on different CARLA
simulated scenarios.

4.4 DAMOT Evaluation in CARLA

Figure 4 illustrates the followed process, validating both DAMOT architectures
based on our BEV-MOT [2] and AB3DMOT [3] (our baseline) on CARLA sim-
ulator using AB4COGT, a specific tool designed by authors to extract CARLA
objects information used as ground-truth on KITTI-3DMOT evaluation tool
developed by AB3DMOT.

Fig. 4: DAMOT validation through AB4COGT and KITTI-3DMOT

To demonstrate the potential of validation on simulated environments by
using AB4COGT, several scenarios are defined in CARLA driving simulator. The
ego vehicle used in all scenarios mounts a top LiDAR configured as described
in Table 3. The scenes are saved using AB4COGT tool, recording the object
when it is around the ego-vehicle and within a 50 meters radius, storing both
ground-truth labels and LiDAR point clouds to ensure synchronization. Then,
point clouds are reproduced as ROS message to stimulate PointPillars [1] input,
detecting the object in the scene. Tracking is then applied to obtain CLEAR
MOT [18] metrics.

Scenario 1. Parked aside vehicles. In this scenario we replicated a KITTI-
like scene to demonstrate the similarity between simulated and real scenes. The
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autonomous ego vehicle travels along a street where several vehicles are parked
aside, reproducing an environment similar to KITTI traffic scenes, without dif-
ficulties to complete the planned path.

Figure 5 shows the disposal of the objects in scene, displaying a BEV of
CARLA simulator scene, a BEV of detected and tracked vehicles, and a perspec-
tive view of LiDAR point cloud and tracked objects to verify correspondence.

Fig. 5: Scenario 1. Parked aside vehicles.

It can be observed in Fig. 5 that CARLA provided LiDAR point cloud is not
accurate enough to vehicles shape, decreasing the ability of PointPillars to detect
cars due to its training on real scenarios, with accurate vehicles shape. A similar
scene provided by KITTI is displayed in Fig 6. In this case, a real LiDAR point
cloud is given to PointPillars input, being able to detect much more vehicles and
consequently producing a better and more stable objects tracking.

(a) KITTI point cloud. (b) Detected and tracked vehicles.

Fig. 6: KITTI scene DAMOT and point cloud.
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Scenario 2. Stopped at junction. The second scenario takes place at
a simulated traffic-light regulated junction, where the ego vehicle detects and
tracks moving vehicles, introducing detection and tracking on dynamic objects.
It can be observed on Fig 7 that, despite of time delays shown on tracked vehicle
markers, the vehicles are correctly detected and uniquely identified, showing a
fuzzy trail on predicted future positions.

Fig. 7: Scenario 2. Stopped at traffic-regulated junction.

Scenario 3. Entering a roundabout. Last scenario recreate a situation
considering the opposite condition of KITTI, that is, our ego-vehicle, represented
by a Tesla Model 3, is static aside of the road whilst the other vehicles are
moving around our vehicle. In order to validate the performance of our DAMOT
system, we store the odometry of the vehicles obtained through the odometry
ROS topics defined for each vehicle (ground-truth), while their predicted position
and associated identifier are obtained from the MOT system.

(a) Tracked odometry vs ground-truth. (b) RGB view.

Fig. 8: Scenario 3. Entering a roundabout.

In Fig. 8a vehicles ground-truth trajectory are drawn as a continuous line
while tracked vehicles are shown as asterisks, squares and circumferences re-
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spectively and other detected objects appears as crosses. It can be appreciated
how close are predicted and ground-truth positions for each vehicle, and the
consistency of the tracker, which keeps a correct association to each vehicle for
almost all the scene. Also it can be noted that most false positives are due to
roundabout urban decoration elements.

Fig. 8b shows main ego vehicle centered on image and projected 3D bounding
boxes overlapping the tracked vehicles. RGB camera is not needed for tracking
and is only used for demonstrative use.

DAMOT validation results. Table 4 shows the results of the validation
tests for the above scenarios using the KITTI-3DMOT tool based on validation
code developed by [3], comparing two tracking methods, providing a method-
ology to test this kind of systems in every traffic condition without taking any
risk.

Table 4: DAMOT validation on CARLA scenarios.

Method AMOTA AMOTP MOTA MOTP IDS FRAG FP FN

AB3DMOT [3] 21.92 63.67 32.60 69.27 0 26 68 178
BEV MOT [2] 26.45 12.04 48.77 22.09 0 28 0 187

It can be seen that our BEV-MOT [2] tracking method achieves better
AMOTA and MOTA results than AB3DMOT[3], which are intrinsically related
with tracking metrics, obtaining a lower result on AMOTP and MOTP met-
rics, associated with a worst detection. According to these results, BEV-MOT
tracking method is more efficient and demonstrates a better performance than
AB3DMOT, increasing AMOTP and MOTP values when obtaining a better
detection in a more realistic LiDAR point cloud.

5 CONCLUSIONS

This work presents the architecture and validation of our 360 degrees Real-Time
3D Multi-Object Detection and Tracking system on KITTI dataset with 3D
DAMOT evaluation tool and CARLA simulator, a flexible and hyper-realistic
open-source simulator for autonomous driving. The implemented method allows
to track static and dynamic objects around an autonomous car in real-time to
enhance its safety system by only using a 3D LiDAR point cloud as input. The
validation has consisted of firstly analyze the results on KITTI validation set
modifying the 3D object detector architecture and the trained weights. After
that, different traffic scenarios has been implemented in CARLA to study the
performance of our DAMOT architecture in a realistic urban environment, com-
paring our BEV-MOT proposal with AB3DMOT (our baseline). As future works,
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the system will be mounted on our real electric autonomous car to fully test its
ability to detect and track vehicles and pedestrians in traffic urban scenarios,
improving the robustness of our current tracking system. Also different sensors
such as radars and cameras will be added in order to strengthen the DAMOT
module behaviour. Furthermore, we hope CARLA will improve LiDAR point
cloud sensor in order to produce more realistic vehicles shapes to approximate
PointPillars ability to detect object to real world datasets.
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