
Simulating use cases for the UAH Autonomous Electric Car

Carlos Gómez-Huelamo1, Luis M. Bergasa1, Rafael Barea1, Elena López-Guillén1, Felipe Arango1,
Pablo Sánchez2

Abstract— This paper presents the simulation use cases for
the UAH Autonomous Electric Car, related with typical driving
scenarios in urban environments, focusing on the use of hierar-
chical interpreted binary Petri nets in order to implement the
decision making framework of an autonomous electric vehicle.
First, we describe our proposal of autonomous system archi-
tecture, which is based on the open source Robot Operating
System (ROS) framework that allows the fusion of multiple
sensors and the real-time processing and communication of
multiple processes in different embedded processors. Then, the
paper focuses on the study of some of the most interesting
driving scenarios such as: stop, pedestrian crossing, Adaptive
Cruise Control (ACC) and overtaking, illustrating both the
executive module that carries out each behaviour based on
Petri nets and the trajectory and linear velocity that allows
to quantify the accuracy and robustness of the architecture
proposal for environment perception, navigation and planning
on a university Campus.

keywords: simulation, behaviours, autonomous vehicles,
ROS, V-REP

I. INTRODUCTION

Autonomous vehicles are one of the greatest engineering
challenges of our era. It must be able to navigate without
making mistakes, consequently it has to understand the envi-
ronment. Since the first projects in the 80s (PROMETHEUS
in Europe [1] and Navlab in US [2]) many initiatives were
launched by universities, research centers and automobile
companies. DARPA Urban Challenge provided a break-
through in self-driving technology [3].

Despite all the impressive efforts in the development of au-
tonomous systems, fully autonomous navigation in arbitrarily
complex environments is still decades away. The reason for
this is two-fold: Firstly, autonomous systems, which operate
in complex dynamic environments, require artificial intelli-
gence that generalizes to unpredictable situations and reasons
in a timely manner. Secondly, informed decisions require
accurate perception, but so far, most of the existing computer
vision systems produce errors at a rate not acceptable for
autonomous navigation [4].

Autonomous car control systems must be able to take
driving decisions based on the prior knowledge of the

*This work has been funded in part from the Spanish MINECO/FEDER
through the SmartElderlyCar project (TRA2015-70501-C2-1-R, TRA2015-
70501-C2-2-R)and from the RoboCity2030-DIH-CM project (P2018/NMT-
4331), funded by Programas de actividades I+D (CAM) and cofunded by
EU Structural Funds.

1Carlos Gómez-Huelamo, Luis M. Bergasa, Rafael Barea, Elena López-
Guillén and Felipe Arango are with the Electronics Department, Uni-
versity of Alcalá (UAH), Spain. cram3r95@gmail.com, {luism.bergasa,
rafael.barea, elena.lopezg}@uah.es, juanfelipe.arango@edu.uah.es

2Pablo Sánchez is with the Department of Systems Engineering and
Automation, University of Vigo, Pontevedra, Spain, pasanchez@uvigo.es

systems (road maps, traffic rules, sensor models and vehicle
dynamics) and observations about the particular traffic sit-
uation. The observations come from the perception system
that can include different on-board sensors such as odometry,
cameras, LiDAR or GPS. At the same time, the decisions
are variables that control the vehicle motion. Most of the
implementations of these decision-making systems break
down hierarchically into four components: route planning,
executive layer, motion planning and vehicle control.

Our architecture is based on the open source Robot
Operating System (ROS) that was launched to make easier
the implementation of perception, mapping, localization and
planning methods for robots autonomous navigation, provid-
ing a dynamic middleware with publisher/subscriber com-
munication and a remote-procedure call mechanism. ROS-
based systems provide an operating system-like services to
operate robots with the fusion of multiple sensors data and
time stamp of different devices [5].

In that sense, this paper presents and validates a novel
ROS-based autonomous navigation architecture Fig. 1 based
on hierarchical interpreted binary Petri nets to implement the
decision-making framework, developed by the authors, in V-
REP Fig. 2(a) [6], one of the most used 3D simulators in the
field of robotics, describing some very interesting driving
behaviours inspired in the CARLA Autonomous Driving
Challenge [7], and finally showing both qualitative and quan-
titative results. This validation represents the preliminary
stage for implementing these use cases in a real environment
using our UAH electric car prototype.

II. RELATED WORKS

Behavioral decision-making should provide tools to de-
fine the traffic rules and model the sequence of actions
and events that can take place in the different driving
scenarios (overtaking, pedestrian crossing, stop, give way,
ACC, etc.). Different approaches have been proposed for
decision-making systems with the aim of self-driving. These
approaches include different heuristic solutions [3] based
on the concept of identifying a set of driving contexts or
driving scenarios (lane driving, intersection handling, etc.),
each of which requires the vehicle to focus on a reduced set
of environmental features.

In addition, the presence of reliable simulation use cases
take even more importance in order to check the behaviours
that a car can face in complex driving situations which must
be managed by using this decision-making layer. Decision
making for autonomous driving is challenging due to un-
certainty in the knowledge about the state of the vehicle



and particularly the driving situation. This uncertainty comes
from different sources, such as that introduced by observers.
Especially challenging is to estimate the continuous state of
nearby external agents such as other vehicles or pedestrians,
since their behavior is, in general, unpredictable.

To design an optimal decision system that takes into
account uncertainty, Partially Observable Markov Decision
Processes (POMDP) offer a theoretically grounded frame-
work to capture the fact that the decision system does not
know the underlying state of the system [8]. Even though
POMDP appears to be a good solution, in practice, due to
the complexity of these systems, they cannot scale to real-
world scenarios.

Finite-state machines FSM [9], hierarchical finite-state
machines [10] and decision trees are among the most popular
solutions. The winning team (Tartan Team) in the DARPA
Urban Challenge [11] used a hierarchical finite-state ma-
chine to implement their behavior generation component.
For complex problems, the difficulty in representing the
system as FSM is to deal with the state explosion problem
and the need to explicitly implement the potentially high
number of transitions. Some researchers have considered
Behaviors Trees (BT) because the transitions between states
are implicit to the structure of the BT. According to [12],
one of the major benefits attributed to BTs over FSMs is
superior maintainability and extensibility.

However, one of the main problems of BTs is that a naive
implementation exhibits blocking behavior and, in order to
make them suitable for autonomous driving, this limitation
needs to be addressed. Parallel activities or concurrency can
be easily expressed in terms of Petri nets. In an FSM there
is always a single current state. Petri nets are a powerful
tool to model, design and analyze distributed, sequential and
concurrent systems. In Petri nets there may be several states
any one of which may evolve by changing the state of the
Petri net. In the approach presented here, every behavior is
modeled as a Petri Net. The main decision-making system
that decides what behavior to execute is also modeled as a
Petri Net, as shown in 2(b). In particular, we use hierarchical
interpreted binary Petri nets [13] where a Petri net can start
another Petri net or stop any of the Petri nets that have
started.

On the other hand, most used 3D simulators in the
field of robotics are V-REP and Gazebo, because of their
ease integration in ROS. Other simulation environments are
Microsfot Airsim [14], initially designed for drones but
recently updated so as to include autonomous vehicles, ROS
development studio [15] (based 100 % on Cloud, so a system
of computers allows the parallel training of as many robots as
required) and CARLA [7], which is one of the newest open
source simulator for autonomous vehicles based on Unreal
engine, with a recent release of its ROSbridge. Despite of
the fact that our simulation use cases are based on CARLA
Challenge and future works will try to adapt our system
architecture to CARLA, for this paper we decided to use
V-REP simulator since the performance was very similar to
Gazebo and the group had previous experience in the use of

this simulator.

III. AUTONOMOUS NAVIGATION ARCHITECTURE

The navigation framework is a modular architecture where
individual modules asynchronously process information.
These modules are independent processes that communicate
with each other using the ROS inter-process communication
system (PCS). In particular, the publish/subscribe paradigm
is used in order to provide non-blocking communications.
Each module corresponds to an independent Linux process
running on different ECUs (Electronic Circuit Unit). Soft-
ware modules are organized in four sets:

1) The hardware drivers layer: includes a set of programs
that control different hardware devices that comprises sensors
and actuators.

2) The control layer: implements the basic control and
navigation functionality. It also contains the reactive control
(local navigator), localization (localization), path planning
(map manager) and a program that processes most of the
exteroceptive sensors to detect relevant events (event moni-
tor).

3) The executive layer: coordinates the sequence of ac-
tions that need to be executed by other modules to carry out
the current behavior.

4) The interface layer: consists of a set of processes to
interact with the users and to connect to other processes for
multi-robot applications.

Fig. 1. Proposed Autonomous navigation architecture

Environment Perception is based on the fusion of LiDAR
and camera information. Our motion control is divided into
high-level planning and lower-level reactive control. First,
the high-level planning calculates a path consisting of a
sequence of lanelets [16] that can be modified depending on
the performed behaviours by the executive layer. The goal



(a) (b)

Fig. 2. (a) Simulation example: On the left the RVIZ simulator illustrates the point cloud detection. On the right, V-REP simulator shows the environment
which our sensors face. (b) Main Petri Net of our decision-making system.

of the local navigation system is to safely follow the path,
keeping the car within the driving lane, and following the
behaviours constraints established by the high-level planning.
To do that, it obtains the curvature to guide the car from
the current position to a look-at-head position placed in the
center of the lane using the Pure Pursuit approach [17]. This
curvature is used as the reference for an obstacle avoidance
method based on the Beam Curvature Method (BCM) [18].
This approach allows to maintain the vehicle centered in
the lane while is able to avoid unknown obstacles that can
partially block the lane.

The decision making is implemented through a Petri net
that takes as inputs the local perception (provided through
the event monitor module), the map manager information
and the vehicle localization in the map. In concrete, we
use hierarchical interpreted binary Petri nets, where a net
can start another net or stop any of the already started
ones. To implement them we use the same tool (RoboGraph)
employed by the authors in other mobile robot applications
[19], but not in a real prototype of autonomous electric
vehicle, as presented in this paper.

IV. SIMULATION STAGE

V-REP is a multiplatform simulation software developed
by Coppelia Robotics GmbH [20]. A fully functional free
version is available for researchers.

A. Environment

The environment is modeled both geographic and topo-
logically by using the lanelet approach presented in [16]
and OpenStreetMap (OSM) service. Lanes and connections
among them are manually delimited, including regulatory
traffic information, to generate an enriched map useful for
navigation.

The map manager loads the map and is in charge of
planning a new path as a sequence of lanelets where each
lanelet is defined by two bounds (left and right) named ways.
Besides the path, this module serves other queries from other
modules related to the map. For example, it should provide
the contiguous lanes for the overtake maneuver, the lanes of
an intersection to the event monitor for the cross intersection

maneuver and it should also provide the position of regula-
tory elements. For the navigation, three different planners
are applied. First, a lanelet path is obtained using an A*
algorithm from the lanelet maps. Then, as commented above,
a global path planner calculates an executable path by the
car that tries to go in the middle of the lanes using the Pure
Pursuit approach, and finally a local navigation algorithm
based on BCM is executed to perform different behaviors
following this path and avoiding unexpected obstacles.

Roads and buildings are loaded using OBJ files from
the OSM website. Native OSM format is converted to OBJ
format by using the open source tool OSM2World. To create
the OSM map we used WGS84 coordinates (made up by
latitude, longitude and height) whilst the simulator works in
Cartesian coordinates (UTM) relative to an origin (roughly
the center of the campus). Transformations from one system
to another are done using the libraries implemented in the
ROS geodesy package.

B. Vehicle

The visual part of the car seen in simulation (Fig. 2(a)) has
been designed to get the best similarity with respect to our
real prototype of the University of Alcalá (UAH). Dynamic
properties of the vehicle are formed giving a mass to cuboids
(straight parallelepipeds) to simulate its inertia. In addition,
it is equipped with four wheels with damping, propulsion
engine, brakes, steering and sensors. The reference system of
the car is centered on the rear axle, taking the X axe pointing
to the front, the Y to the left and the Z above. The vehicle
is controlled by speed commands (linear in X and angular
in Z). The angular velocity at Z is positive according to the
rule of the right hand, so the left turns are positive. These
speed commands are interpreted by the low-level controller
obtaining the corresponding turning angle and accelerations.

The steering wheel is simulated in V-REP as a dynamic
system (with inertia and friction) operated by a servo-
controlled motor in position. This means that the position of
the wheel is internally controlled by V-REP through a PID.
The simulator receives steering wheel position commands
in the same way as the real vehicle. The current position
of the steering wheel determines the steering angle of a
central virtual steering wheel according to the tricycle model.



Through some geometric relationships, the orientation of the
front wheels is established in such a way that the Ackermann
arrangement is fulfilled.

C. Sensors and environment perception

A model is implemented for each of the main sensors
aboard the vehicle.

1) LiDAR: Placed on the roof of the vehicle and in
the center of it. The Velodyne VPL-16 model included
by default in the V-REP sensor repository is used. This
sensor is modeled as four equally spaced sensors sweeping
a horizontal angle of 90o each one and a vertical one of +/-
15o with 16 different beams. The 360o is obtained fusing
asynchronously the 4 sensors one after the other. This model
has been modified to obtain a synchronized full sweep. The
LiDAR information is published directly in PointCloud2
format.

2) ZED stereo camera: To model the ZED stereo camera,
placed on the front of the vehicle just below the rear view
mirror and facing the road, two RGB sensors are included,
horizontally separated by a baseline. This camera incorpo-
rates an internal depth calculation module. To simulate this
functionality, a vision sensor located in the middle of the two
previous sensors is used, which directly returns a cloud of
3D points without error. Image messages are published with
the X axis pointing right, the Y down and the Z inwards in
the image plane.

3) GPS: To model a GPS is very easy because we
transform the UTM coordinates of the rear axis central point
to WGS84 coordinates.

Furthermore, semantic segmentation is carried out in the
RGB images taken from the right camera of the stereo
pair to detect the driving area and the different obstacles
in the field of view of the camera, in an unified way. To
do that, we use our Convolutional Neural Network (CNN)
called ERFNet (Efficient Residual Factorized ConvNet for
Real-Time Semantic Segmentation) [21]. After that, the 2D
segmented pixels are merged with the 3D LIDAR point
cloud. In this way, a coloured 3D point cloud is obtained
according to the field of view of the camera, where each
colour represents a kind of obstacle (vehicles, pedestrians,
trees, etc.). The point cloud outside this field of view is
not segmented. Obstacles that can interfere car navigation
are obtained from the point cloud using coloring clustering.
Velocity and direction of each obstacle are obtained using
a Precision Tracker evaluator [22]. This information is pub-
lished by the event monitor module.

V. BEHAVIOURS AND EXPERIMENTAL RESULTS

Several tests have been carried out in the Campus of
the UAH in Madrid. These behaviours are inspired in the
CARLA Autonomous Driving Challenge [7]. In order to
perform each behaviour, the control layer takes the informa-
tion of the lanelets and nearest regulatory elements, provided
by the map manager modules, so as to generate a certain
velocity command for the low-level control, following the
behaviour commanded by the executive layer through the

respective Petri net. Results demonstrates that perception
data, navigation algorithms, and the movement commands
are synchronized by using the proposed ROS-based archi-
tecture. The performance of these behaviors is illustrated by
plotting the linear velocity versus time and the described
trajectory (Fig. 3).

Due to the size constraints of this paper we do not the Petri
net associated to each behaviour in RoboGraph interface,
although Fig. 2(b) illustrates the main Petri Net of our
decision-making system. Moreover, Table I shows the main
Petri nets used to manage the different traffic scenarios and
their main features. Inputs are the events that can change
the state of the Petri net (most of them correspond to
ROS messages). Input modules are the modules that publish
the events, such as GUI (module that creates, edits and
monitors the tasks), RG Dispatch (executes the tasks) and
event monitor commented above. The outputs are the actions
(ROS messages) that are sent to these different modules.

Note that the first Petri Net (Background) is a net running
always in background. This net is waiting for a message from
the user requesting to execute some of the tasks that the car
can carry out. Selector PN decides which behaviour to run,
according to the traffic situation, and monitors the execution
of the behaviours. Each Petri nets implements the behaviour
that corresponds to a particular traffic situation.

Below are described, in terms of simulation, some of these
interesting use cases based on urban environments in order
to validate our proposed ROS-based architecture.

A. Stop behaviour

Intersections are some of the most common danger areas
on the road, because there is often a significant number of
elements to consider: traffic signals, turning lanes, merging
lanes, and other vehicles in the same area. Intersections are
highly varied, and some require the car to stop, while others
only require a give way.

This behaviour is triggered if the distance between the
stop regulatory element and our car is 30 m. In that moment
the perception system will try to check if there is some car
in the lanelets that intersect with our current trajectory. If
no car is detected, the car resumes the path followPath not
modifying the current trajectory. However, even if no car is
detected, if the distance to the reference line is lower than
a threshold D, set in the algorithm, due to the traffic rules
of the stop behaviour, the ego-car must always stop, so the
car starts to send a stop command to the local navigation
module. At this point, while waiting for the car to stop, the
messages regarding the car velocity from the local navigation
module will be received until the speed reaches zero (stopped
transition). After waiting a few seconds for safety, it will
proceed to follow the path if the event monitor publishes a
message indicating that it is safe to merge. While merging,
when the car reaches the intersection, it considers that the
safest maneuver to do is to continue and it ends the behavior.

On the other hand, if a vehicle is detected before reaching
the intersection, a corresponding message is received from
the event monitor and the safeMerge transition is set to



Petri Net Inputs Input modules Outputs Output module No nodes No transitions
Background Man/auto GUI User Run Selector RG Dispatch 8 9

goToPoint GUI User Stop selector RG Dispatch
Selector PN Reg. Element (STOP ..) Map manager Run PedestrianCrossing RG Dispatch 21 29

Dist. Reg Element Map manager Stop PedestrianCrossing RG Dispatch
End Reg. Element Map manager Run GiveWay RG Dispatch

Reg. Element (STOP ..) Event monitor Stop GiveWay RG Dispatch
End Reg. Element Event monitor Run STOP RG Dispatch

FrontCarVel Event monitor ... ...
Odom Base

FollowLane Traffic sign (max speed, ...) Event monitor SetMaxVel Local Navigator 6 8
Force End RG Dispatch STOP Local Navigator

Pedestrian NoPedestrian Event monitor WatchforPedetrians Event Monitor 10 13
Crossing Pedestrian Event monitor SetMaxVel Local Navigator

DistToPedestrianCrossing Map manager StopAtPoint Local Navigator
PedestrianCrossingOver Map manafer

Force End RG Dispatch
stopped Local Navigator

STOP SafetoMerge Event monitor CheckSafeMerge Event Monitor 9 12
NotSafetoMerge Event monitor SetMaxVel Local Navigator

DistToStop Map manager StopAtPoint Local Navigator
StopOver Map manager
Force End RG Dispatch

stopped Local Navigator
GiveWay SafetoMerge Event monitor CheckSafeMerge Event Monitor 9 12

NotSafetoMerge Event monitor SetMaxVel Local Navigator
DistToStop Map manager StopAtPoint Local Navigator
StopOver Map manager
Force End RG Dispatch

e curren stopped Local Navigator
Traffic Light CheckForTrafficLight Event monitor CheckForTrafficLight Event Monitor 10 12

SafetoMerge Event monitor CheckSafeMerge Event Monitor
NotSafetoMerge Event monitor SetMaxVel Local Navigator

DistToStop Map manager StopAtPoint Local Navigator
StopOver Map Manager
Force End RG Dispatch

stopped Local Navigator
Adaptive Cruise Current Velocity Map manager SetMaxVel Local Navigator 4 6
Control (ACC) FrontCarVel Event monitor

DistToFrontCar Map manager
Overtake FrontCarVel Event monitor CheckLeftLane Event Monitor 14 21

SafeChangeLeftLane Event monitor CheckRightLane Event Monitor
NotSafeChangeLeftLane Event monitor SwichtLeftLane Local Navigator
SafeChangeRightLane Event monitor SwitchRightLane Local Navigator

NotSafeChangeRightLane Event monitor CheckRightLane Event Monitor
Odom Base

OnLeftLane Local Navigator
OnRightLane Local Navigator

TABLE I
SUMMARY OF THE MAIN FEATURES, INCLUDING INPUTS, OUTPUTS AND NUMBER OF ELEMENTS, FOR THE MAIN PETRI NETS OF OUR WORK

0. In this case, the car will stop (stop place) sending the
corresponding stop message to the local navigator and waits
until the event monitor module reports a safeMerge message.
After stopping in front of the reference line, and waiting for
the detected car to take out of our perception system, the car
will proceed to keep on the path and finish the behaviour.
For simplicity and extension of this paper, it is not shown
both the stop behaviour with the presence and non-presence
of detected car but we show the most representative, in this
case stop with detected car.

Fig. 3(a) and 3(e) show the linear velocity and odometry
projected onto the JOSM map, respectively, merging this
information with the signals fired by the corresponding Petri
net behaviour. It can be observed that the first 12 s the car is
carrying out the stop Petri net (BHstop, init, green segment),
since the distance to the regulatory element is lower than
30 m. The car decreases its velocity from 11 m/s (40 km/h,

our campus speed limitation) to 0 m/s, because even there
is a detected car or not, the ego-car must stop in this traffic
situation. In this particular case there is a detected car, so
the car keeps stopped (0 m/s) at the reference line waiting
for safe merge (BHstop, WaitingSafeMerge, yellow segment)
until the detected car is taken out of our field of view.
Notice that this yellow segment can be observed in the linear
velocity but not in the odometry because while the car keeps
stopped, it does not move so the odometry is not modified.
Finally, the car resumes the path (BHstop, ResumingPath,
yellow segment) and the velocity is set at maximum again
(Main, ACC limit max speed to 11,111, black segment) until
the car faces another regulatory element.

B. Pedestrian crossing behaviour

A pedestrian crossing is the most basic regulatory element
that helps people to cross a road. First, a node in the respec-



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. First and second row represent, respectively, the linear velocities and described trajectory of the Stop with car detected (a,e), Pedestrian Crossing
(b,f), ACC (c,g) and Overtaking (d,h) behaviours

tive Petri net called watchForPedestrians sends a message to
the event monitor module to watch for pedestrians crossing
or trying to cross on the crosswalk. The watchForPedestrians
output transition includes three possibilities:

1) Non-pedestrian detected: A confirmation from the
event monitor notifying that it received the message and so
far no pedestrian has been detected (!pedestrian transition)
in the pedestrian crossing area.

2) Pedestrian detected: A pedestrian has been detected
(pedestrian transition) in the pedestrian crossing area.

3) Non-confirmation: There has been some problem and
no confirmation has been received from the event monitor,
so a timeout message is received and the car must stop its
trajectory (T10 transition).

While the current state is followPath, the local navigation
module will keep following the lane provided by the map
manager module. At this moment, the system is receptive to
two events: pedestrian and distToRegElem <D.

The event pedestrian corresponds to a message published
by the event monitor module: If this message is received,
the pedestrian transition will be fired, switching the PN from
followPath node to stop node. The transition distToRegElem
<D takes place when the car is closer than a threshold
distance (D) to the crosswalk. In this case, every time the
localization module publishes a new position message, the
distance between the car position and the pedestrian crossing
(in particular its reference line) is calculated and compared
with this threshold ”D”.

When the car gets close to the pedestrian crossing, it
reduces its velocity and keeps following the path (reduceVel
node) until the reference line of the pedestrian crossing is
reached (distToRegElem <minDist transition). Meanwhile,
if a pedestrian is detected by the event monitor module,
the message issued by this module will fire the transition
labeled pedestrian. The Petri net will switch the token to
the second stop node, where a stop message will be sent to
the local navigation module, forcing the vehicle to stop in

front of the reference line of the pedestrian crossing. The
Petri net will leave the stop mode when a notPedestrian
message is received (!pedestrian transition), meaning that the
car can resume its path, ending the Petri net and allowing the
Selector PN to enable another behaviour in the trajectory, if
required.

Fig. 3(b) and 3(f) show the linear velocity and odometry
projected onto the JOSM map, respectively, of the pedestrian
crossing behaviour. It can be noticed that the simulation
started with the car in static and a distance between the car
and the pedestrian crossing exceeding 30 m, for that reason,
the velocity is set at maximum at the beginning (Main, ACC
limit max speed to 11,111, yellow segment). Notice that the
final alternance between green and red segments is coherent,
since the old pedestrian can disappear, so the PN switchs
the token to the reduceVel node, and a new pedestrian can
appear so the PN switchs the token again to the stop node.

C. Adaptive Cruise Control behaviour

Adaptive Cruise Control (ACC) is a behaviour that repre-
sents an available cruise control system for vehicles on the
road that automatically adjusts the vehicle velocity to keep a
safe distance from vehicles ahead. ACC technology is widely
regarded as a key component of any future generations of
autonomous vehicles. They improve the driver safety as well
as increasing the capacity of roads by maintaining optimal
separation between vehicles an reducing driver errors.

Fig. 3(c) and 3(g) show how the velocity of our car is
decreased from 11,11 m/s (max velocity in the campus) to
3,77 m/s, that represents the velocity of the vehicle ahead.
Note that even if the velocity of the front car is not constant
but is changing with the time, the response of our car will
also adjust to the velocity.

D. Overtaking behaviour

Overtaking is one of the most dangerous maneuvers and its
automation is very challenging, especially on two-lane roads.



It comprises a sequence of lane-change and lane-keeping
operations, during which the system must coordinate the car
steering and speed to eliminate any potential collision with
other vehicles. Overtaking another vehicle requires steering
from the original lane to the adjacent lane, driving in this
adjacent lane, and returning to the original lane in front of
the overtaken vehicle. The executive layer decides when to
overtake, heeding information provided by the map manager
(is overtaking allowed in this lane according to traffic rules,
and for how long?) and the event monitor module (what is
the speed of the vehicle in front, and is it safe to move to
the left lane?). There are three main states in this behavior
according to the Table I: the car is changing to the left lane
(switchLeftLane place), the car is in the left lane overtaking
the other vehicle (overtaking place) and the car is returning to
the right lane (returnRight place). The event monitor reports
when the adjacent left lane is clear for a sufficient distance
(leftLaneInfo transition) and the speed of the car it is going
to pass (frontCar transition) while the map manager module
knows the distance remaining in the current path where
overtaking is allowed. Whenever one of these messages is
received, the conditions are evaluated (evaluateCond place)
and depending on the outcome of this evaluation the car
might start switching to the left lane (switchLeft place) or
keep waiting (start place). Similar sequences are also defined
while the car is returning to the right lane (returnRight place).

Fig. 3(d) and 3(h) show the coherent steps that the over-
taking Petri net should carry out: First, due to the presence of
a vehicle ahead, the velocity is limited. Then, the overtaking
is evaluated. If the output is true (overtaking is possible),
our car speeds up and switch to the left lanelet. While the
car is in the left lanelet, it maintains the velocity until the
previous car is overtaken, and finally it returns to the right
lanelet, finishing the overtaking PN and setting the velocity
to the maximum.

VI. CONCLUSIONS AND FUTURE WORKS

This work presents how using a hierarchical-Petri-net-
based programming environment, to implement the decision-
making process of an autonomous navigation framework, and
the V-REP simulator, to model real urban traffic scenarios in
simulation, in order to validate our ROS-based architecture
proposal for our autonomous vehicle. The perception system
in which the different modules are based on is made up by the
fusion of LiDAR, cameras and DGPS. The proposal has been
validated in simulation with an exhaustive study of typical
urban driving scenarios such as stop, pedestrian crossing,
Adaptive Cruise Control and overtaking. As future work,
all these behaviours will be translated both to the CARLA
simulator, so as to get more challenging situations in order
to improve the robustness and reliability of our system, and
to our real electric car prototype, to validate these simulation
use cases in the real world.

REFERENCES

[1] E. D. Dickmanns, B. Mysliwetz, and T. Christians, “An integrated
spatio-temporal approach to automatic visual guidance of autonomous

vehicles,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 20, no. 6, pp. 1273–1284, 1990.

[2] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Vision and navi-
gation for the carnegie mellon navlab,” in High Precision Navigation,
pp. 97–122, Springer, 1989.

[3] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[4] J. Janai, F. Guney, J. Wulff, M. J. Black, and A. Geiger, “Slow flow:
Exploiting high-speed cameras for accurate and diverse optical flow
reference data,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3597–3607, 2017.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

[6] C. Otero, E. Paz, R. Sanz, J. López, R. Barea, E. Romera, E. Molinos,
R. Arroyo, L. Bergasa, and E. López, “Simulación de vehı́culos
autónomos usando v-rep bajo ros,” 2017.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv preprint arXiv:1711.03938,
2017.

[8] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.,”
in Robotics: Science and systems, vol. 2008, Zurich, Switzerland.,
2008.

[9] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standard-
ization in mobile robot programming: The carnegie mellon naviga-
tion (carmen) toolkit,” in Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453), vol. 3, pp. 2436–2441, IEEE, 2003.

[10] P. Beeson, J. O’Quin, B. Gillan, T. Nimmagadda, M. Ristroph, D. Li,
and P. Stone, “Multiagent interactions in urban driving,” 2008.

[11] M. Buehler, K. Iagnemma, and S. Singh, The DARPA urban challenge:
autonomous vehicles in city traffic, vol. 56. springer, 2009.

[12] M. Colledanchise and P. Ögren, “How behavior trees modularize
robustness and safety in hybrid systems,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1482–1488,
IEEE, 2014.

[13] J. L. Fernández, R. Sanz, E. Paz, and C. Alonso, “Using hierar-
chical binary petri nets to build robust mobile robot applications:
Robograph,” in 2008 IEEE International Conference on Robotics and
Automation, pp. 1372–1377, IEEE, 2008.

[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics, pp. 621–635, Springer, 2018.

[15] D. S. Michal and L. Etzkorn, “A comparison of player/stage/gazebo
and microsoft robotics developer studio,” in Proceedings of the 49th
Annual Southeast Regional Conference, pp. 60–66, ACM, 2011.

[16] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Intelligent Vehicles Symposium
Proceedings, 2014 IEEE, pp. 420–425, IEEE, 2014.

[17] N. Y. Ko and R. G. Simmons, “The lane-curvature method for local
obstacle avoidance,” in Proceedings. 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Innovations in Theory,
Practice and Applications (Cat. No. 98CH36190), vol. 3, pp. 1615–
1621, IEEE, 1998.

[18] J. L. Fernández, R. Sanz, J. Benayas, and A. R. Diéguez, “Improving
collision avoidance for mobile robots in partially known environments:
the beam curvature method,” Robotics and Autonomous Systems,
vol. 46, no. 4, pp. 205–219, 2004.

[19] J. López, D. Pérez, and E. Zalama, “A framework for building
mobile single and multi-robot applications,” Robotics and Autonomous
Systems, vol. 59, no. 3-4, pp. 151–162, 2011.

[20] C. Robotics, “V-rep user manual,” URL http://www. coppeliarobotics.
com/helpFiles/. Ultimo acesso, vol. 13, no. 04, 2015.

[21] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 1, pp. 263–272, 2018.

[22] D. Held, J. Levinson, and S. Thrun, “Precision tracking with sparse 3d
and dense color 2d data,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on, pp. 1138–1145, IEEE, 2013.


	Introduction
	Related Works
	Autonomous Navigation Architecture
	The hardware drivers layer
	The control layer
	The executive layer
	The interface layer


	Simulation stage
	Environment
	Vehicle
	Sensors and environment perception
	LiDAR
	ZED stereo camera
	GPS


	Behaviours and Experimental results
	Stop behaviour
	Pedestrian crossing behaviour
	Non-pedestrian detected
	Pedestrian detected
	Non-confirmation

	Adaptive Cruise Control behaviour
	Overtaking behaviour

	Conclusions and Future Works
	References

