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This paper presents a new real-time hierarchical (topological/metric) localization

system applied to the robust self-location of a vehicle in large-scale urban environ-

ments. Our proposal improves the current vehicle navigation systems based only on GPS

sensor. It is exclusively based on the information provided by both, a low-cost wide-

angle stereo camera and a low-cost GPS. A low level metric process obtains a 3D

sequential mapping of natural landmarks and the vehicle location/orientation. GPS

measurements are integrated within this low level, improving vehicle positioning.

A higher topological processing level, based on fingerprints and the multi level relaxa-

tion (MLR) algorithm, has been added to reduce the global error keeping real-time

constraints. Some experimental tests, using a real car navigation system on urban

environments with loop closures, have been carried out. Main results and conclusions

are presented.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Low-cost vehicle navigation systems based on GPS are
installed in most of the vehicles nowadays. One of the
main problems of these systems is its performance
degradation on urban environments. High buildings,
tunnels, etc, can reduce vehicles location accuracy and
they can even cause data loss, making navigation
unavailable. One of the main goals of this work is to
improve vehicle navigation, mainly in very populated
urban areas where the GPS information is not reliable.
On-board navigation systems solve this problem
by coupling dead-reckoning and GPS positions. Dead-
reckoning is calculated through an on-board low-cost
inertial measurement unit (IMU), which estimates
vehicle’s movements, and the covered distance estima-
tion, available through ABS wheels speed sensors. Some
basic references about GPS and inertial navigation can be
found in [1,2]. Despite many recent improvements in
the characterization of acceleration and rotation rate,
ll rights reserved.

her).
measurement errors due to thermal stability of micro-
electro-mechanical-systems (MEMS) components, cause
drifts in pure integration cycle even with the aid of
odometry. Fiber-optic gyrometers offer more accuracy
than MEMS, but their costs do not comply with auto-
motive cost requirements [3]. In the last years, an
alternative to GPS for absolute localization has been to
use active beacons with known locations. Recently many
researchers have been working on adapting localization
and mapping strategies from the robotic to the vehicle
localization problem using different sensors fusion. In [3]
a vehicle is able to navigate and self-locate using a GPS,
an inertial navigation system (INS) and odometry. A
multi-model interactive multi-model EKF (IMM-EKF) is
applied for fusion information. A highly accurate
estimation is achieved, but with an expensive solution.
In [4] a self-localization system for outdoor environments
is presented. The vehicle is equipped with a stereo
camera, an IMU, odometry as well as a standard GPS.
The vehicle is able to self-locate with relatively low error
within medium size environments (around 100 m).
However, the fact that the system does not use any
specific management method for large environments
limits the use on this kind of environments, even more
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in the case of IMU, GPS or odometry unavailability.
Cameras have become much more inexpensive than lasers
or radar, and also provide texture rich information about
scene elements at practically any distance from the
camera. Our proposal consists on obtaining vehicle
dead-reckoning using visual information from a stereo
camera, instead of an IMU, due to our goal to develop a
low-cost standard nomadic system independent of the
manufacturer
protocols confidentiality. Moreover, as difference of IMU
systems, our proposal generates a map and it is able to
detect loop closings using visual appearance information.
Then, scenarios with recurrent trajectories, as buses
routes, are optimal for this system. In this way, accumu-
lated drifts, typical of odometry sensors, are removed
from time to time even with GPS unavailability. So, to
improve low-cost vehicle navigation systems perfor-
mance, our proposal is able to provide a vehicle navigator
with pose data by fusing information from both a low-cost
stereo camera and a low-cost GPS. To deal with the large-
scale environments problem, the system is divided into
two hierarchical processing levels.
2. Implementation

Hardware architecture of our system is depicted in
Fig. 1. From a processing point of view, our approach
defines local metric sub-maps independent among them.
They are composed by several visual landmarks and
managed by an EKF, on what we call the low processing
level. Over these local sub-maps we define a higher
topologic map level, called high processing level, which
relates the local sub-maps keeping the global map
consistency (see Fig. 2). On one hand, low processing
level is based on a visual system using a low-cost stereo
wide-angle camera mounted on the windshield area of a
vehicle and looking forward of the vehicle. An EKF filter is
used to obtain the visual estimation. On the other hand,
GPS measurements are taken at the same time,
contributing to reduce the accumulated drift of the
system when no loops are closed.
Fig. 1. Hardware architecture mounted on a commercial car. Stereovi-

sion system and low-cost GPS as well as the processing unit are shown.

The measurement prediction vector hi as well as the vehicle reference

frame are also depicted.
2.1. Low processing level

This level implements algorithms and tasks needed to
locate and map the vehicle on its local sub-map using
visual information. It is based on the monocular approach
by Davison [5] and its adaptation to stereo developed by
the authors [6]. For clarity reasons the sub-map notation
is omitted, so it is assumed a unique sub-map for the low
processing level implementation. In Fig. 2 (left) we show
the main tasks carried out on the low processing level. It
essentially implements an EKF where a prediction on the
vehicle+landmarks locations is updated with the visual
observation. This estimation is again improved with the
low-cost GPS measurement estimation.

2.1.1. Extended Kalman filter application

In order to apply an EKF, a state vector X and its
covariance matrix P need to be defined. The purpose of the
algorithm is to continuously estimate the position and
orientation of the vehicle, via the linearization of the next

state function, f(X), at each time step. Vehicle coordinate
system has been set in the camera frame one. Due to the
motion model used for the vehicle movement, linear and
angular speeds are added to the vehicle state vector:
Xv=(Xvh,qvh,vvh,o)T. In this equation, Xvh=(xvh,yvh,zvh)T is
the 3D position of the camera relative to the global frame,
qvh=(q0,qx,qy,qz)

T is the orientation quaternion, vvh is
the linear speed and o is the angular speed. On the other
hand, as the whole sub-map has to be included into the
filter, all features global positions, Yi, are added to the
state vector: X=(Xv,Y1,Y2?)T.

2.1.2. Motion model

To build a motion model for a camera mounted on a
mobile vehicle using only visual information, a practical
solution is to apply the so-called impulse model. This assumes
constant speed (both linear and angular) during each time
step and random speed changes between steps in the three
directions. Some restrictions have been applied to adapt the
6DOF generic model to the vehicle’s dynamics. According to
this model, to predict the next state of the camera, the
function fv=(Xvh+vvh Dt,qvh� q[o Dt]vvh,o)T is applied. The
term q[o Dt] represents the transformation of a 3 compo-
nents vector into a quaternion. Assuming that the map does
not change during the whole process, the absolute feature
positions Yi should be the same from one step to the next one.
This model is subtly effective and gives the whole system
important robustness even when visual measurements
are sparse.

2.1.3. Measurement model

Hereafter we present a brief description of our
proposal, for a deeper explanation we remit the reader
to [6]. Visual measurements are obtained from the
‘‘visible’’ features positions. In our system we define each
individual measurement prediction vector hi=(hix,hiy,hiz)

T as
the corresponding 3D feature position relative to the
camera frame (see Fig. 1). To choose the features to
measure, some selection criteria have to be defined. These
criteria will be based on the feature ‘‘visibility’’; that is,
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Fig. 2. (Left) Low processing level tasks carried out within each sub-map. (Right) General architecture of our two hierarchical processing levels. Each

sub-map has an associated fingerprint.
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whether its appearance is close enough to the original one
(when the feature was initialized). This is based on
the relative distance and point of view angle respect to
the one at the feature initialization phase. The first step is
to predict the measurement vector hi. To look for the
actual measurement vector zi, we have to define a search
area on the projection images. This area will be around
the projection points of the predicted measurement hi on
both left and right images: UL: (uL,vL), UR: (uR,vR). To obtain
the image projection coordinates a simple camera
pin-hole model is applied. Radial and tangential distortion
models, calculated for the cameras in a calibration setup,
are then carried out. To obtain zi we solve the inverse
geometry problem applying the distortion models as well.
Regarding the search areas, they will be calculated based
on the uncertainty of the feature 3D position, which is
called innovation covariance Si (see [5]). As we have two
different image projections, Si needs to be transformed
into the projection covariance PUL and PUR using Eq. (1)

PUL
¼
@UL

@hi
Si

@UL

@hi

� �T

; PUR
¼
@UR

@hi
Si

@UR

@hi

� �T

ð1Þ

These two covariances define both elliptical search
regions, which are obtained taking a certain number of
standard deviations (usually 3) from the 3D Gaussians.
Once the areas where the current projected feature should
lie are defined, we can look for them. At the initialization
phase, the left and right images representing the feature
patches are stored. Then, to look for a feature patch, we
perform normalized sum-of-squared-difference correlations

across the whole search region. In order to improve long-
term tracking, a 2D patch warping is done considering the
normal vector information of each patch.

2.1.4. Feature initialization

The selected criteria to initialize new landmarks are to
maintain always at least 5 visible features and 4
successfully measured features. Then, when a new feature
initialization needs to take place, its corresponding patch
will be searched within a rectangular area randomly
located on the left camera image. To obtain the right
image feature correspondence we search over the epipolar

line, restricted to a certain segment around the estimated
right projection coordinates.

2.1.5. GPS fusion

To reduce the error in the vehicle pose estimations,
caused by the accumulated drift, visual estimation is
fused with the GPS pose information by using a statistical
approach [7], as shown in (2). In this equation XPvh,PPvh

stands for the vehicle 2D position and covariance
calculated from the visual information, and XGPS,PGPS for
the vehicle 2D position and covariance obtained from the
GPS sensor

Xfusion ¼ XPvhþPG
PvhðP

G
PvhþPGPSÞ

�1
ðXGPS�XPvhÞ ð2Þ

In the same way, the fused vehicle estimated covar-
iance is calculated by mean of Eq. (3)

Pfusion ¼ PG
Pvh�PG

PvhðP
G
PvhþPGPSÞ

�1PG
Pvh ð3Þ

To obtain the final pose, including orientation, inter-
polation on the two last GPS updates is carried out.

2.2. High processing level

To reduce global error when GPS is not available, a
high topological processing level, based on fingerprints, is
added. This level defines a topological map, where each
node (fingerprint) FP={fpl9lA0?L} is associated to a
segment of the path covered by the vehicle. These
segments are called sub-maps. The fingerprints store the
vehicle pose at the moment of the sub-map creation and
they define its local reference frame. In Fig. 3 (left) we
show the overall diagram for this level. The sub-map
generation is performed periodically so, after a certain
covered section of the path, a new sub-map is created and
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Fig. 3. (Left) High processing level diagram. Each ordinary fingerprint is added periodically to the database. In case a SIFT fingerprint condition is

detected, it is created and compared with previous SIFT fingerprints. In case of positive matching a loop closing + map correction process is generated.

(Right) Representation of the high level topological map. Vehicle global uncertainties PG
rob are shown, increasing along the vehicle path at each of the

fingerprints poses. Solid red lines represent vehicle global uncertainties at SIFT fingerprints places. Numbers represent each fingerprint. Graph also shows

an example of shorter path selection for global uncertainty calculation after a loop closing situation.
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a fingerprint is associated to it. If the vehicle is traveling
between two fingerprints, an edge is inserted to connect
these two vertices, which represents a link between
two poses. Meanwhile, the edges store transformation
matrices Xfpl

vh and uncertainties Pfpl

vh to describe
the relationship between connected fingerprints, as
Fig. 3 (right) depicts.

To carry out the loop closing detection when the GPS is
lost, an additional type of fingerprint called scale
invariant feature transform (SIFT) fingerprint SF={sfqAFP9-
qA0?Q,QoL} is defined. This is based on a variable-size
set of SIFT features YFq ¼ Yf q

m9m 2 0 � � �M
� �

and it is taken
when a significant vehicle turn is detected. This adds to
the vehicle pose some visual information to identify the
place where it was taken. Matching between the
previously captured SIFT fingerprints, within an
uncertainty area, and the current one is carried out to
detect pre-visited zones. We calculate this uncertainty
area PG

vh by expressing the current local uncertainty Pfpl

vh in
the global reference frame, where X0

vh is the current global
vehicle position

PG
vh ¼

@X0
vh

@Xfpi

vh

Pfpl

vh

@X0
vh

@Xfpi

vh

 !T

ð4Þ

In case of positive matching, a loop closing is detected
and the topological map is corrected by using the MLR
algorithm [8] over the whole set of fingerprints. The MLR
determines the maximum likelihood estimate of all
fingerprint poses. The MLR algorithm manages only 2D
information, therefore we need to obtain the 2D relative

fingerprint pose Xfpl�1

2fpl
and covariance Pfpl�1

2fpl
from the

corresponding 3D relative fingerprint pose Xfpl�1

fpl
and
covariance Pfpl�1

fpl
. First, the 2D pose is defined as:

Xfpl�1

2fpl
¼ xfpl�1

2fpl
yfpl�1

2fpl
y

fpl�1

2fpl

� �T

, i.e., the 2 planar

coordinates and the orientation angle. Therefore we can
relate both 2D and 3D poses according to Eq. (5).

Xfpl�1

2fpl
¼ xfpl�1

fpl
zfpl�1

fpl
2arccos qfpl�1

0 fpl

� �� �T

ð5Þ

where xfpl�1

fpl
, zfpl�1

fpl
and qfpl�1

0fpl
are coordinates of Xfpl�1

fpl
. Also,

we compute the 2D covariance by using the correspond-
ing jacobians. On the other hand, if the GPS signal was
missed, once it is recovered again, the global vehicle pose
is updated and the global map is corrected. Its effect is
similar to a loop closing detection, as shown in Fig. 4
(right). Tasks carried out at the high processing level are
slower than the ones at the low processing level.
Therefore they are parallelized and the final processing
time is kept below the real-time constraint, defined at
33 ms per step for this work. With our proposal a global
map optimization is carried out even when the GPS signal
is lost for a long term. Finally, the obtained vehicle pose
data is formatted using the NMEA protocol and
continuously sent to the car navigator.

3. Results

The system has been tested on several urban paths,
usually covered by a public bus line. Fig. 5 shows one of
these paths. This is 1.41 km long and presents 3 areas
where the GPS is lost. Especially in these areas, our
proposal improves the car navigation performance based
only on GPS. Fig. 6 depicts the error respect to the ground
truth on X and Z axes, using the standalone GPS and our
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Fig. 4. (Left) Euclidean distance error (e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þZ2
p

) using standard single GPS (up) and our combined system (down). Global covariances uncertainties for

each node are shown as well. (Right) MLR diagram before (left) and after (right) GPS recovering. When GPS misses, the vehicle pose is estimated by using

vision only. Some drift is appreciated due to the relative measurement nature of visual estimation combined with unpredictable errors, as a consequence of

partial occlusions from great vehicles, for example. Error estimation in these cases is minimized by the use of wide-angle lenses, which give wide fields of

view.

Fig. 5. (Left) Path estimation using our system. Crosses indicate GPS measurements and black dots represent visual landmarks. Numbered ellipses

indicate the areas where GPS signal was lost. (Right) Vehicle turn to the left within a tunnel correctly interpreted by the navigator in the absence of GPS

information. Start point is marked as S and end point as E.
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combined system. Ground truth is obtained using an RTK-
GPS Maxor GGDT, with an estimated accuracy of 2 cm.

Focusing on the third GPS loss, the vehicle was in an
underground crossroad. At this time the vehicle turns to
the left. As the system still has visual information
available, the navigator is able to realize about the vehicle
turn and perform the correct path planning. Results of
another path are presented. In this case, it was 3.17 km
long and contained 5 loops inside, taking 8520 low level
landmarks and 281 nodes. Most landmarks were located
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Fig. 6. Path estimation error on X-axis (left) and Z-axis (right), using a standalone GPS (up) and our system (down). Numbers indicate GPS loss sections

shown in Fig. 3. The red marked area indicates the third GPS loss, where ground truth was also unavailable.

Table 1
Processing times.

Low processing level computation times High processing level computation times

Number of features/frame 5 Number of features 8520

Number of fingerprints 281

Filter step Time Time

Measurements 3 ms Fingerprint matches 3 s

Filter update 5 ms Loop closing 1 s

Feature initializations 7 ms

GPS processing (1 s sampling period) 4 ms
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on high buildings areas, where GPS is less reliable, while
GPS signal is stronger in open-spaced areas. In these last
areas better location estimation is provided due to GPS
data correct visual data deviations from time to time. As it
can be seen, both sensors are complementary, providing
good estimations for different situations. The Euclidean
error relative to the ground truth of both the standard GPS
and our combined implementation is depicted in Fig. 4.
Some videos of the approach working for different paths
can be found on our website1 . We obtain an average error
around 4 m and a reasonable low error at the moments of
total GPS loose. This error is compared to the global
uncertainty covariances for each node using the Euclidean
formula applied to the X and Z components as well,
showing consistent error estimates. As expected, uncer-
tainty monotonically grows on GPS unavailable sections
due to the relative measurements provided by the visual
sensor. More than 20 km were tested with this method
and obtained results were similar to that shown here. All
test cases show a global processing time below the real-
time constraint (33 ms/frame). Table 1 shows the
processing times per each task in a detailed way.
1 http://www.robesafe.com/tecnologias/index_en.php#robotics.
It shall be taken into account that tasks within the high
processing level are carried out only upon certain events
such as: fingerprint evaluation, loop closing detection or
after loss of GPS signal. Then, they can be processed in
parallel with low processing level tasks and, as a
consequence, under real-time constraint. Robustness of
our proposal has been shown to be enough for an
application of vehicles localization in urban environments
which include trajectories with loop closures. It was
tested at different times along the day with different light
and traffic conditions. Positioning errors were low at day
time, regardless of traffic conditions. At night time, results
get worse due to low lighting conditions. Several limita-
tions were identified at the time of practical implementa-
tion. Vehicle’s positioning error increases in the following
cases: large tunnels with poor textures or low illumina-
tion, long unavailability of GPS without loops in the
trajectory, loop closing from very different trajectories
(points of view) and long routes with poor lighting
conditions.
4. Conclusion

We have presented a robust localization system based
on the fusion of visual information and GPS data. Our

http://www.robesafe.com/tecnologias/index_en.php#robotics
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proposal improves the behavior of a standard nomadic
vehicle navigator system. Results showed a reduced
estimation error with respect to the use of a standalone
GPS sensor, mainly in GPS loss areas but also in the whole
sequence. Improvements on the navigator behavior are
shown as well on a practical implementation tested on
urban environments, which include trajectories with loop
closures similar to the buses routes. Some limitations
have been identified for our system. As future work we
plan to overcome some of these limitations.
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