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Abstract. Driver drowsiness is a major contributor to traffic accidents,
making its early and reliable detection a key challenge in intelligent trans-
portation systems. Despite advances in computer vision, accurately as-
sessing a driver’s state in real time remains difficult due to individual
variability and environmental factors. In this context, we present a Deep
Learning-based neural network architecture for driver drowsiness detec-
tion, specifically designed for low-cost devices. Using temporal sequences
of images, the driver’s facial region is extracted via an initial detection
model. These sequences are then processed with a model that analyses
spatial features and temporal patterns of the face to generate a binary
classification (alert/drowsy). The proposal is implemented as a modu-
lar pipeline in PyTorch, optimised for inference on limited hardware. A
comprehensive benchmark of the trained models on the same database
validates the approach and identifies the optimal architecture for the
task.

Keywords: Deep Learning, Computer Vision, Driver Monitoring, Drowsi-
ness Detection, Temporal Processing.

1 Introduction

Road safety remains a critical global challenge, with driver drowsiness being
a common and dangerous risk factor. Alarmingly, 15–30% of car accidents are
directly or indirectly related to drowsiness. This phenomenon can occur at any
time of day, whether due to night-time fatigue, morning impairment or post-
meal sluggishness. This urgency is now being addressed through strict regulatory
action: European Safety Regulation 2019/2144 [1], enacted in July 2022, requires
that all newly homologated vehicles to integrate Advanced Driver Assistance
Systems (ADAS), including Drowsiness Detection (DDR), by 2026.

The regulation imposes critical design constraints. DDR systems must min-
imise error rates under real driving conditions and operate without collecting
biometric data (e.g., facial recognition). Additionally, they must adhere strictly



2 Marco Fernández-Pérez

to EU data protection laws by avoiding continuous storage of driver data. Using
computer vision and deep learning, this research develops a real-time regulatory-
compliant solution.

In this paper, we propose a non-intrusive single-camera system that is mounted
on the vehicle dashboard and processes image sequences in order to detect
drowsiness via a neural network architecture. Upon identification of impairment,
the system triggers multi-modal alerts (visual/auditory) to help the driver re-
cover and stop the vehicle safely. By aligning technical innovation with European
legislative requirements, prioritizing privacy, accuracy, and real-world applica-
bility, this work aims to mitigate the significant human cost of fatigue-related
accidents.

2 Related Work

This section explores solution approaches centred on a modular architecture with
two key components: a face detection and cropping module, and a sequence clas-
sification module for drowsiness detection. Each module is trained and evaluated
in different datasets focused on each task.

2.1 2D face detection

The goal of 2D face detection is to accurately locate and isolate the driver’s
face within vehicle cabin images, especially those taken by wide-angle cameras,
which capture surrounding areas. This task is critical for driver monitoring sys-
tems, where isolating the facial region from complex backgrounds is essential.
State-of-the-Art (SOTA) object detectors are leveraged to achieve robust real-
time performance. Among prevalent models, YOLO [2] (You Only Look Once),
Faster R-CNN [3] (Region-based Convolutional Neural Network), and RT-DETR
[4] (Real-Time DEtection TRansformer) represent the most widely adopted ap-
proaches, each offering distinct trade-offs in speed, accuracy, and computational
efficiency.

The YOLO family models prioritise inference speed and resource efficiency
through their single-stage architecture, making them ideal for embedded sys-
tems with stringent latency requirements. In contrast, Faster R-CNN employs
a two-stage framework that first generates region proposals before classifica-
tion, yielding higher accuracy at the cost of significant computational overhead.
RT-DETR introduces an end-to-end transformer-based design that eliminates
heuristic components like Non-Maximum Suppression (NMS), achieving a com-
petitive speed-accuracy balance. Comparative evaluations highlight YOLO’s su-
periority in latency (3–9 ms) and efficiency for real-time applications, whereas
Faster R-CNN incurs higher latency (50–120 ms) despite superior precision. RT-
DETR (10–15 ms latency) offers architectural innovation but demands greater
computational resources than optimised YOLO variants.

In driver monitoring systems, where low latency, minimal resource consump-
tion, and deployability on edge hardware are critical requirements, lightweight
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single-stage detectors such as YOLO are commonly preferred. The subsequent
model selection process prioritises variants that offer an optimal trade-off be-
tween precision and inference speed, guided by empirical latency-accuracy bench-
marks. In our case, we selected the YOLOv11-nano variant due to its favourable
balance between detection accuracy and computational efficiency.

2.2 Drowsiness classifiers

The aim of drowsiness classification is to detect states of fatigue or alertness in in-
dividuals by analysing video sequences over time. This task can be approached in
multiple ways: using end-to-end video understanding models to directly extract
spatio-temporal features, or using hybrid frameworks that combine an image
classifier with a temporal component to model sequential dynamics.

The paper evaluates these two approaches using the following architectures
for each case:

– End-to-end video models: Video ResNet [5], Video SwinTransformer [6],
Video S3D [7]

– Hybrid sequential models: ResNet [8] + LSTM, EfficientNet [9] + LSTM

Performance was assessed in terms of computational efficiency (parameter
count) and inference speed, with focus on real-time applicability. Among all ar-
chitectures, Video S3D and Video SwinTransformer demonstrated superior op-
erational efficiency. Video S3D’s factorized convolutions minimise computational
overhead while maintaining temporal awareness, and the hierarchical attention
mechanism of Video SwinTransformer achieves rapid processing through opti-
mised token grouping.

These two models, which prioritise low latency and balanced resource de-
mands, are identified as the optimal solutions for real-time drowsiness detection
systems. The Experiments section provides a comparison of classification end-
to-end models for this particular task.

3 Architecture

The architectural design is intended for real-time driver drowsiness detection,
utilising a dashboard camera as the primary surveillance device. The system
utilises a two-stage modular pipeline, as illustrated in Figure 1, for the process-
ing of video frames at a fixed rate. The combination of facial localisation with
temporal behaviour analysis enables the detection of fatigue signs (e.g. prolonged
eye closure, yawning).

First, the system initiates when a front-facing dashboard camera captures a
raw image of the driver. This image is immediately processed by Module 1 (Facial
Region Detector and Extractor) to detect the driver’s face within a bounding
box and extract a facial crop. The cropped facial image is then fed into a sliding
temporal buffer that maintains the last 10 consecutive facial crops using a FIFO
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(First-In-First-Out) mechanism, where each new frame displaces the oldest in
the sequence.

Once the buffer accumulates 10 frames, representing 1 second of temporal
data, the sequence is used as input to Module 2 (Spatio-Temporal Feature Ex-
tractor and Classifier). This block processes the facial sequence using either an
End-to-End video architecture or a hybrid image classifier coupled with a tem-
poral aggregator. It extracts spatial features (eye/blink dynamics, yawning) and
temporal patterns (sustained eye closure, head nodding), outputting a drowsi-
ness probability.

Fig. 1: Architecture of the real-time driver drowsiness detection system.

If drowsiness is detected with probability greater than a threshold, the system
triggers multi-modal alerts: a visual warning on the dashboard and an audible
alarm.

3.1 Face Detection

The face detection module is provided with an image of an arbitrary resolution.
The model infers the image and extracts a 1:1 aspect ratio with 224 x 224 pixel
resolution face crop. This crop is then inserted into the sliding temporal buffer
for subsequent utilisation in the classification process. As previously indicated
in the Related Work section, we elected the YOLOv11-nano variant for this
module.

3.2 Drowsiness Classification

The drowsiness classification stage employs 10 sequential face crops, which are
stored in the sliding temporal buffer, as input. The images, which possess an
identical aspect ratio and resolution, are processed to identify drowsiness, pro-
ducing a probability value ranging from 0 to 1.

4 Experiments

In this section, the results of experiments conducted using different datasets for
each module are presented. The performance of each module is evaluated, and the
joined application is tested on different scenarios. Furthermore, some ablation
studies are presented to achieve the optimal number of images for classification
and output threshold.
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4.1 Datasets

Person Faces Dataset [10] is a dataset for face detection. The database con-
tains 3,011 images with a resolution of 640 x 640, along with bounding boxes
indicating the presence of people in the photographs. The images depict a range
of facial cases, incorporating diverse individuals, genders, ethnicities, facial ex-
pressions, glasses and angled faces. The dataset has built-in data augmentation
capabilities, including a selection of three augmentations per sample. Among
these options are horizontal flip, random zoom crop, rotation, grayscale, hue
shift, saturation adjustment, brightness adjustment, exposure adjustment, blur,
and random occlusions. The dataset features a single class, face, for all bound-
ing box annotations. This dataset is used to train and evaluate the face detector
stage of our architecture.

Driver Drowsiness Detection [11] is a dataset focused on video classifi-
cation tasks. The dataset contains 41,732 images with a resolution of 227 x 227,
extracted from 54 real videos featuring 27 different individuals. The videos have
been filmed from a variety of angles and under different lighting conditions. In
order to adapt the dataset to the 10-frame format, a manual split into groups of
10 sequential frames was performed.

In addition, we conduct a qualitative assessment of the model using sequences
from our own recorded dataset.

4.2 Metrics

We use the following metrics to evaluate the different stages:

– Accuracy: Measures the proportion of correct predictions relative to the total
number of samples.

– Confusion Matrix: A table that explicitly shows the model’s correct and
incorrect predictions, broken down by actual and predicted classes.

– Inference Time: The time it takes for the trained model to generate a pre-
diction for a new sample once deployed. For a real time application, minimal
inference time is required.

– Number of parameters: Defines the total number of adjustable parameters
the neural network model acquires during training. This value determines
hardware requirements in production environments.

– Precision: The ratio of what is truly positive to what was predicted as posi-
tive.

– mAP50: A key metric in 2D object detection. It simultaneously evaluates
classification precision and localization accuracy. It calculates the average
precision for all classes using an IoU (Intersection over Union) threshold.

4.3 Face Detector

To perform the initial face detection step within the proposed architecture, we
trained the YOLOv11-nano model. The training process was conducted under
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two configurations: using transfer learning from the COCO dataset for 15 epochs,
and training from scratch for 30 epochs to evaluate the model’s ability to adapt to
the specific task. All experiments were executed on a desktop computer equipped
with an AMD RADEON RX 9070 GPU, allowing for consistent benchmarking
of training performance and inference speed.

Table 1: Comparison of YOLOv11-nano with and without transfer learning

With Transfer Learning Without Transfer Learning
Positive Pred. Negative Pred. Positive Pred. Negative Pred.

Positive Label 87.16% 8.56% 74.81% 18.84%

Negative Label 4.28% 6.35%

Table 1 presents the confusion matrices for the YOLOv11-nano model, com-
paring training with and without transfer learning, using an IoU threshold of
0.5. The results clearly demonstrate that the transfer learning approach signif-
icantly accelerates the training process and improves performance. Specifically,
training from scratch for 30 epochs yields inferior results compared to just 15
epochs with transfer learning. The model trained with transfer learning achieves
a mAP@0.5 of 0.957 on the validation set, with a higher proportion of true pos-
itives, indicating superior adaptation to the face detection task. Furthermore,
the measured inference time of 9 milliseconds confirms its suitability for real-
time driver monitoring applications. Figure 2 shows real detection results in our
custom recorded dataset.

Fig. 2: Face detection and cropping inference example

4.4 Drowsiness Classifier

This final classification module leverages sequences of cropped facial images to
detect driver drowsiness. To address the classification task, we evaluated a range
of deep learning models, including both end-to-end and hybrid architectures. For
hybrid models, we adapted them to the sequence-based nature of the problem by
removing their final classification layers and extracting feature vectors instead.
These vectors were then processed by a Long Short-Term Memory (LSTM) net-
work, which captures temporal dependencies across the input sequence. The
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output from the final LSTM time step, summarising the temporal information,
was fed into a binary classifier to produce the final alert/drowsy prediction. In
contrast, end-to-end architectures directly generate classification probabilities
without requiring additional temporal processing modules.

The Driver Drowsiness Detection dataset exhibits a class imbalance, with
approximately 33% of samples labelled as ”Drowsy” and 66% as ”Non-Drowsy.”
To address this issue during training, class weighting was applied to compensate
for the uneven distribution, ensuring that both classes contribute proportion-
ally to the loss function and improving the model’s ability to detect minority
class instances. All models use a batch size of 16 and a dataset split of 80%
training (3326 sequences), 15% validation (623 sequences), and 5% testing (209
sequences). Transfer learning was applied to enhance performance and training
speed.

Table 2: Metrics for drowsiness classification models
Model Val Acc Test Acc TI (ms) Params Epochs

Video ResNet 84.91% 78.68% 32.1 33 M 10
Video S3D 87.56% 84.21% 9.4 7 M 15
Video SwinTransformer 85.09% 84.69% 9.2 27 M 15
ResNet18 + LSTM 86.68% 89.00% 24.0 11 M 15
ResNet50 + LSTM 86.84% 90.43% 56.7 23 M 15
EfficientNet + LSTM 88.44% 93.30% 73.0 4 M 15

Table 2 shows different classification metrics, uses a standard 0.5 threshold,
and inference times measured on an AMD Radeon 9070 GPU. While ResNet50
+ LSTM and EfficientNet + LSTM achieve high accuracy (90.43% and 93.30%),
their inference times (56.7 and 73 ms) exceed the constraints required for real-
time applications. Additionally, the gap between validation and test accuracy
suggests overfitting, which is further confirmed during inference on our recorded
videos, where these models demonstrate reduced generalisation capability. In
contrast, architectures such as Video S3D and ResNet18+LSTM offer acceptable
latency (9.4 and 24 ms), but still exhibit validation-test accuracy gaps of up
to +5.53%, likely due to limited dataset diversity (27 subjects), which hinders
generalization.

In this context, the Video Swin Transformer emerges as the optimal solution,
meeting key requirements for real-time driver drowsiness detection. It demon-
strates strong predictive consistency, with a minimal gap between validation
and test accuracy (85.09% vs. 84.69%), and offers the fastest inference time
among evaluated models (9.2 ms). This balance between competitive accuracy
and sub-10 ms latency makes it particularly suitable for safety-critical applica-
tions. Additionally, it achieves the lowest rate of false negatives, minimising the
risk of misclassifying drowsy sequences as non-drowsy and thereby enhancing
reliability in real-world scenarios. Figure 3 shows inference examples in diverse
sequences.
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(a) Drowsy: Yawning

(b) Drowsy: Closing eyes

(c) Alert

Fig. 3: Drowsiness classification inference example

4.5 Model Pipeline

Based on the evaluation of all relevant performance metrics, YOLOv11-nano was
selected for facial detection due to its optimal balance between accuracy and
inference speed. For drowsiness classification, the Video Swin Transformer was
chosen for its superior generalisation and real-time capabilities. The complete
implementation follows the workflow illustrated in Figure 4, integrating both
modules into a unified pipeline for efficient and accurate driver monitoring.

Fig. 4: Deployment workflow

In environments with similar visual characteristics, physical cameras may be
replaced by pre-recorded video sources. A key distinction lies in the data acquisi-
tion method: while cameras provide the most recent frame in real time, recorded
sources deliver frames sequentially. To simulate real-time conditions during eval-
uation, recorded frames are sampled at 0.1-second intervals, corresponding to a
frame rate of 10 FPS.

We evaluated the pipeline in two distinct environments to assess its perfor-
mance under different hardware constraints. The first setup involved a desktop
PC equipped with an AMD RADEON RX 9070 GPU, which was also used for the



Low-cost Driver Monitoring System Using Deep Learning 9

previously described experiments. The second setup employed an NVIDIA Jet-
son AGX Xavier embedded device to measure performance in low-cost, resource-
constrained scenarios. Performance measurements reveal notable differences be-
tween the two hardware environments. On the desktop setup, the GPU alone
consumes approximately 350W, with the YOLOv11-nano detector running at 9
ms and the Video Swin Transformer at 9.2 ms, resulting in a total pipeline la-
tency of 27.7 ms. In contrast, the embedded NVIDIA Jetson AGX Xavier device
operates at just 50W and executes the full pipeline in 57.41 ms, representing a
3.15× slowdown. Despite this, the system maintains a processing rate above 10
Hz, satisfying the minimum requirement for real-time monitoring.

Fig. 5: End-to-end pipeline execution

Figure 5 shows an example of the output of the whole architecture. Dur-
ing qualitative evaluation, occasional issues emerged, such as failures in face
detection when subjects covered their faces with their hands, and classification
inaccuracies for individuals wearing glasses.

4.6 Ablation Studies

Experimental ablation studies were conducted to optimise key parameters of the
drowsiness classification system. Two critical aspects were investigated: the op-
timal number of images per sequence to balance accuracy and real-time latency,
and the most effective classification threshold to improve decision reliability.

To minimise latency while preserving classification accuracy, sequences of
5, 10, and 20 images were evaluated. The Video Swin Transformer model was
trained for 15 epochs using the same dataset employed in the sequence clas-
sification task, with a default decision threshold of 0.5. Inference times were
measured on the same desktop PC used in previous experiments. The results of
this ablation study are summarised in Table 3.

While the 20-image sequence achieved the highest (90.29%) validation accu-
racy, it resulted in the lowest test accuracy (78.85%) and the highest latency
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Table 3: Ablation study of image sequence length
Images Val Acc (%) Test Acc (%) Inf Time (ms)

5 86.63 89.4 22.47
10 85.09 84.69 27.7
20 90.29 78.85 43.8

(43.8 ms), exceeding acceptable limits for low-cost devices. In contrast, the 5-
image sequence offered the best test accuracy (89.4%) and the lowest latency
(22.47 ms). However, real-world testing revealed critical limitations with shorter
sequences: normal blinks, typically spanning only 2–3 frames, were frequently
misclassified as drowsiness due to insufficient temporal context. As a result, a
10-image sequence was selected as the optimal configuration. It provides a ro-
bust test accuracy of 84.69%, maintains a manageable latency of 27.7 ms, and
crucially, demonstrates sufficient resilience to avoid misclassifying typical blinks
as drowsiness in real-world scenarios.

Table 4: Ablation study of the output classification threshold
Threshold Test Acc (%)

0.2 59.81
0.3 77.51
0.4 83.73
0.5 84.69
0.6 87.56
0.7 90.43
0.8 90.91
0.9 86.60

To evaluate the robustness of the architecture, the default drowsiness thresh-
old of 0.5 was compared against alternative values ranging from 0.2 to 0.9. This
analysis was conducted using the final YOLOv11-nano and Video Swin Trans-
former pipeline on the Driver Drowsiness Detection dataset. The results of this
threshold ablation study are presented in Table 4.

A classification threshold of 0.8 achieved the highest test accuracy (90.91%),
significantly outperforming the default threshold of 0.5 (84.69%). Validation on
drowsiness videos reveals that the 0.5 threshold produces false positives during
rapid blinks, where brief score spikes are misclassified as drowsiness due to in-
sufficient temporal filtering. In contrast, the 0.8 threshold reliably identifies true
drowsiness episodes while effectively suppressing these transient artefacts. This
behaviour is illustrated in Figure 6, where 6a shows the output probability over
time using a threshold of 0.5, and 6b shows the same sequence with a threshold
of 0.8. In both plots, the blue line represents the output probability, and the red
dotted line indicates the classification threshold.
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Fig. 6: Confidence values in a sequence. a) Threshold = 0.5, b) Threshold = 0.8.

The default threshold of 0.5 can misclassify brief increases in the output
score, which are often caused by normal blinking, as indicators of drowsiness.
These transient fluctuations lack sufficient temporal context and should not trig-
ger alerts in a safety-critical system. Figure 7 shows a sequence that is correctly
classified but includes a momentary increase in the score that would trigger a
false alert if the threshold were set at 0.5. In contrast, a higher threshold of 0.8
demonstrates greater robustness by effectively filtering out these noisy activa-
tions and focusing on sustained patterns that better reflect genuine drowsiness.

5 Conclusions and Future Work

The proposed driver monitoring system offers a viable, modular, deep-learning
architecture that is optimised for low-cost devices and achieves real-time infer-
ence suitable for vehicular applications. Its modular design enables individual
components to be updated without the need for full model retraining. The so-

Fig. 7: Peak classification
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lution effectively balances inference speed with minimising false negatives. Fur-
thermore, its compliance with EU Regulation 2019/2144, which stipulates that
biometric data must not be stored and that the system must operate in real
time, further supports its potential for widespread adoption across the automo-
tive industry.

Future optimisation efforts will focus on reducing latency by minimising
memory operations, adjusting numerical precision, and leveraging TensorRT for
model compilation. To enhance generalisation, face detection performance could
be improved through the use of carefully curated datasets that incorporate fixed
camera angles and a wide range of head poses. Additionally, drowsiness clas-
sification systems will benefit from the development of balanced datasets that
reflect greater diversity in ethnicity, gender, and facial features.
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