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bstract

This paper shows the results of a low level controller that has been applied to an autonomous robotic system using a WiFi-based Partially
bservable Markov Decision Process (POMDP). These observations provide a clue for global robot localization from the first iteration of the
OMDP algorithm. Due to the noise channel of WiFi measures, it becomes necessary to make observations at a well known location within the
nvironment. Therefore, a robust local navigator is needed in order to place the robot in an optimal position for making the observation. The
ystem has been tested with two Pioneer 2AT robots in the premises of the Department of Electronics at the University of Alcalá.
c 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For a global navigation system design, in which the
objective is the guidance to a destination room, the topological
discretization is an appropriate representation to facilitate the
planning and learning tasks [1]. In topological discretization
the environment is divided into a priori known nodes. In this
case, the POMDP models provide solutions to localization,
planning, and learning in the robotic context. These models
use probabilistic reasoning to deal with uncertainties, which
is essential in the case of WiFi localization sensors, and a
topological representation of the environment so as to reduce
memory requirements and processing time. The robot needs a
low level controller to move across the nodes and perform local
navigation. The low level controller allows the robot to reach
the next node with the lowest positioning error, in such a way
that observations are obtained with minimum error.

Over the last few years the interest in wireless networks
has increased, and a large number of available mobile tools
as well as other emerging applications are becoming more and
more sophisticated. Wireless networks have become a critical
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component of the networking infrastructure and are available
in most corporate environments (universities, airports, train
stations, tribunals, hospitals, etc.) and in many commercial
buildings (cafes, restaurants, cinemas, shopping centres, etc.).

Many mobile robot platforms use wireless network-
ing to communicate with off-line computing resources,
human–machine interfaces, or others robots, since the advent
of inexpensive wireless technology. These platforms usually
have been equipped with 802.11 b/g wireless Ethernet, thus
having a cheap sensor from which position can be directly in-
ferred without the computational overhead required by image
processing or the expensive solution provided by laser systems.
Many robotics applications would benefit from being able to
use wireless Ethernet for both sensing position and communi-
cation without having to add new sensors in the environment.

The recent interest in location sensing for a well-known
network application and the rising demand on the deployment
of such systems has made network researchers face a well-
known problem in the field of robotics: localization.

Finding a robot pose (position and orientation) from physical
sensors is not a trivial problem. In fact, it is often referred to as
“the most important problem to provide a mobile robot with
autonomous capabilities” [2]. Several systems for localization
have been proposed and successfully deployed for an indoor
environment. These systems are based on: infrared sensors [3],
computer vision [4], ultrasonic sensors [5], laser [6] or radio
frequency (RF) [7]. In some cases, it is possible to find authors
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that combine two different technologies, such as ultrasonic
sensors and RF [8], to improve the accuracy. In this work the
authors use a combination of ultrasonic sensors and Bluetooth
to achieve a high accuracy in the localization, but they need
to add 5 beacons in an environment of 100 m2 while in our
work we don’t need to add extra hardware in the environment.
We use the APs or beacons used to establish the Wireless
Local Area Network (WLAN), and only 7 APs are needed in
a 3600 m2 environment. In conclusion, the system of Ref. [8]
achieves good localizations in small areas by adding a lot of
beacons within the environment. This is not the purpose of this
work where a peer to peer navigation in huge environments
is enough. Within the RF group we can find the localization
systems that use WiFi signal strength measures. WiFi location
determination systems use the popular 802.11 b/g network
infrastructure to determine the global device location without
using any extra hardware. It makes these systems attractive
for indoor environments where traditional techniques, such as
Global Positioning System (GPS) [9], fail.

In order to estimate the robot location, wireless Ethernet
devices measure the signal strength of received packets. The
signal strength is a function of the distance and obstacles
between wireless nodes and the robot. Moreover, the system
needs one or more base stations, or Access Points (APs), to
measure the distance from them to the device. A triangulation
algorithm is then applied to infer the estimated position.

Unfortunately, the wireless channel is very noisy in indoor
environments and the RF signal can suffer from reflection,
diffraction, and multipath effects, which makes the signal
strength a complex function of distance [7]. To solve this
problem, several WiFi location determination systems use a
priori radio map (wireless map) that captures the signature
of each AP at certain points in the area of interest. These
systems work in two phases: training and estimation. During
the training phase, the system constructs the wireless map
in a previous set-up, normally performed in manual mode.
In the estimation phase, the vector of samples received from
each access point is compared to the wireless map and the
“nearest” match is returned as the estimated user location. As
described in this work, accurate WiFi-based positioning can
be used for autonomous navigation of mobile robots in indoor
environments.

For a global navigation system, in which the objective is to
guide a robot to a goal room in a semi-structured environment,
a topological discretization is appropriate to facilitate the
planning and learning tasks and it is specially indicated when
the environment is very large. In this context, topological
representation of the environment and observations using
sensors with high uncertainty, like WiFi signal strength sensors,
the optimal methodology in order to build a robust navigation
system is to use a Markov model known as POMDP [1].

The POMDP is a mathematic model that permits us to
characterize systems with noisy sensors or partial observability.
In this work two different kinds of partial observations are
used: WiFi signal strength and ultrasound sensor. A POMDP
doesn’t know its real state because of the uncertainty of
the observations. The POMDP maintains a belief distribution
called Bel(S) or Belief Distribution (Bel) to solve it. This
distribution assigns to each state s a probability; this probability
indicates the possibility of it being the real state. The Belief
Distribution must be updated whenever a new action or
observation is carried out. In many applications, these two
conditions are simultaneous. When the low level controller
detects a transition a new observation is taken. To carry out
an action and reach the next state the POMDP needs a local
navigation system that positions the robot. This local navigation
system or low level controller is the system able to move
the robot between the states and it contains the transitions
detector for indicating to the POMDP the transition among
nodes assuming some positioning and orientation errors. In this
paper, we present the low level controller used in our POMDP
based on WiFi and ultrasound observations for our robotic
platforms.

With this separation an important advantage is achieved: the
improvement of the low level controller does not affect the main
tasks of localization, planning and learning that are carried out
by the POMDP. In the same manner, the complexity of dealing
with the localization, planning and learning in the topologic
map does not affect the low level controller tasks.

The rest of the paper is organized in the following sections:
Section 2 provides a description of the WiFi signal measure
in indoor environments, as well as a description of the
environment itself. Section 3 provides an introduction to the
POMDP used in this work and the definition of observations.
Section 4 provides a description of the low level controller
and the corridor model estimation. Section 5 shows the system
implementation and results. Finally, the conclusions and future
work are described in Section 6.

2. WiFi signal measure

In this section we present the main causes that produce a
variation of WiFi signal strength in indoor environments as well
as the environment where the measurements have been made.
We have carried out some real experiments in the environment
with our Pioneer 2AT in order to obtain the constraints of the
low level controller that are needed for the POMDP. In the
following, some basic concepts about the test-bed environment
and Wifi signal are presented.

2.1. Test-bed

The test-bed environment was established on the 3rd floor of
the Polytechnic School building, in the Electronic Department
at the University of Alcalá. The layout of this zone is shown
in Fig. 1. It has a surface of 60 m × 60 m, with about 50
different rooms, including offices, labs, bathrooms, storerooms
and meeting rooms.

Fig. 1(b) shows a detail of the two corridors where the
localization and navigation tests have been carried out. We
divide the environment in 67 cells placed 80 cm apart in order
to build the radio-map.

Seven Buffalo Access Points (APs) (WBRE-54G) were
installed at the locations indicated in Fig. 1(a). Five APs were
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Fig. 1. (a) 3rd floor of the UAH electronics department. (b) Detailed view of the test-bed.
Fig. 2. Real prototypes used in the experimental setup. (a) BART, (b) SIRA.

connected to omnidirectional antennas and two APs (AP3 and
AP7) were connected to antennas of 120◦ of horizontal beam-
width. The APs act as wireless signal transmitters or base
stations.

To obtain the measurements at the locations we have used
two Pioneer 2AT robots, BART (Basic Agent for Robotic
Tasks) and SIRA (Spanish acronym for Assistant Robotic
System), which can simultaneously measure the WiFi signal
from different APs using a scanning function. Fig. 2 depicts
a picture of the robotic prototypes used in the experiments.
The two robots have the same platform, but we have added a
structure in the SIRA robot to carry a laptop and to increase the
height of the camera.

2.2. Main WiFi signal variations

In this section we describe the main variations suffered
by WiFi signals in indoor environments. In [10], the authors
identify three main causes for the variation of the signal
strength in an indoor environment:
(1) Temporal variations: variations standing at a fixed position
for a long time.

(2) Large-scale variations: the signal strength varies over a long
distance due to attenuation.

(3) Small-scale variations: these variations happen when the
robot moves over a small distance and it is due to the signal
wavelength (at 2.4 GHz the wavelength is 12.5 cm, then this
effect will appear for distances below 12.5 cm).

We have measured two additional parameters that are
directly related with the low level controller. These parameters
are:

(4) Large orientation variations: these are the variations
suffered by the measurement when the robot is positioned
at the same node, but in the four basic orientations
(North–South–East–West).

(5) Small orientation variations: the signal strength varies when
the robot is positioned at the same node but with a slight
difference with respect to the reference orientation.

In [11], the authors perform different tests to get these
variations in the test-bed environment. To test the temporal
variations we collected samples over a complete day (Friday
to Saturday) from the two nearest Access Points (AP1 and
AP2) and at a fixed robot position near AP1. The sampling
rate was 1 s. The signal strength obtained from AP1 (mean =

−56.8 dBm, σ = 4.5 dBm) was larger than the one obtained
from AP2 (mean = −70 dBm, σ = 3.7 dBm). The reason
for this lies in the fact that AP1 is closer to the robot than
AP2. Additionally, the signal coming from AP2 has to get
through two walls with the corresponding attenuation. The
other conclusion is that the standard deviation of AP1 signal
was larger than the one from AP2. This is due to the fact that
the effect of secondary paths has less influence for AP2 than for
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AP1. Then, the signal received from AP2 is mainly due to the
direct path, while the signal received from AP1 exhibits a high
influence from multi-path fading.

For testing large-scale variations, the signal strength from
all APs was collected with the robot positioned across the 67
positions shown in Fig. 1(b). We took 300 samples for each
position and then we obtained the average value. The variation
of the average signal strength over a distance of 18 m was about
20 dBm. Moreover, there is not a linear variation of the signal
with the distance due to the multi-path effect. This is the reason
why it is very difficult to build a propagation model for indoor
environments.

For demonstrating small-scale variations we took several
measures from all APs at different points across the
environment, separated by a short distance (<12.5 cm). Then
we generated a histogram for each case. Variations up to
±2 dBm were measured in a distance smaller than 1

2λ

(6.25 cm) with different profiles for the histograms. The highest
variations, up to ±6 dBm, were measured in distances between
1
2λ and 3

4λ. We also analysed the effect of the robot orientation
in our environment. For this purpose, we took 300 samples of
WiFi signal strength and then obtained their histograms in the
four basic orientations in order to observe that it is possible
to obtain the orientation, and not only the position of the
robot. The histogram profile is different for the test orientations,
having a maximum difference in the average signal for the test
cases of 8 dBm.

For measuring the small orientation variations we placed the
robot in several nodes of the environment. We then obtained
the histograms for all APs with 300 samples at different
small orientations, with a variation of 3◦ with regard to the
reference orientation. Variations up to ±1 dBm were measured
in orientations smaller than 9◦.

To conclude this section, we can state that the large scale
and orientation variations are useful for robot localization while
the small scale and orientation variations are pernicious for this
system. Therefore, if the small scale error is related to the lateral
error of the low level controller, and the small orientation error
is related to the orientation error of the low level controller, we
need to design a low level controller that meets the following
constraints:

(1) The lateral error must be smaller than 1
2λ (6.25 cm).

(2) The orientation error must be smaller than 9◦.

3. Description of the POMDP

While in a Markov Decision Process (MDP) the environ-
ment observation is free of uncertainty, in real robotic systems
there are some uncertainties associated to their sensor obser-
vations, especially when the sensors are WiFi signal strength
detectors. The MDP considers that only the effect of the actions
has uncertainty.

When a MDP performs a series of execution steps along
states (s0, s1, . . . , sn), executing actions (a0, a1, . . . , an), the
probability of being in state st+1 in the t + 1 execution step
is given by Eq. (1).

p(st+1 | s0, a0, s0, a0, . . . , st , at ) = p(st+1 | st , at ). (1)
Fig. 3. POMDP structure.

This expression indicates that the current state (st+1)
depends only on the previous state (st ) and the previous action
(at ). This is known as the Markov Property.

When a noisy sensor such as the WiFi signal strength is used,
observations with uncertainty are obtained from the sensors.
This case is known as a partially observable process.

The POMDPs are mathematical models that permit us to
characterize this type of system. A POMDP is defined by the
same elements as a MDP: S (states set), A (actions set), T
(transition function), R (recompense function); as well as by
the following elements: O is the observations set (o ∈ O) and
υ is the observation function [12–14].

A POMDP does not provide the real state because the
observation has uncertainty. A POMDP maintains a belief
distribution called Bel(S) or Belief Distribution (Bel) over the
states to solve it. This distribution assigns to each state s a
probability that indicates the possibility of being the real state.
This is the main reason to divide the control stage of a POMDP
in two blocks, as can be seen in Fig. 3:

(1) State estimator: the input of this block is the current
observations and its output is the Bel function. This block
obtains the probability over all possible states.

(2) Politics: the input of this block is the current Bel and its
output is the action to perform. This block obtains the
optimal action to perform in the next execution step to
maximize the recompense (R).

The Belief Distribution must be updated whenever a new
action or observation is carried out. When an action a is
executed and a new observation o is taken, the new probabilities
are obtained as in (2)

Belt (s′) = η × p(o | s′)

×

∑
s∈S

p(s′
| s, a) × Belt−1(s), ∀s′

∈ S. (2)

In the context of robot navigation, the states of the Markov
model are the localizations (or nodes) of the topological
representation of the environment. Actions are local navigation
behaviours that the robot executes to move from a state to
another, and observations are perceptions of the environment
that the robot can extract from its sensors. In this case, the
Markov model is partially observable because the robot may
never know exactly which state it is in. To solve the POMDP
model the EM algorithm is used.
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Fig. 4. (a) Example of environment discretization and (b) its topological representation.
Table 1
Actions set

Action Symbol Function States where it is possible to execute

Follow corridor aF Continue through the corridor to the next state Office nodes
No operation aNO Used as a directive in the goal state Office and extreme nodes
Turn around aT Change the navigation direction Extreme nodes
Turn right aR Turn 90◦ to the right Extreme nodes
Turn left aL Turn 90◦ to the left Extreme nodes
3.1. Design of the POMDP navigation system

In this section we describe the design of our navigation sys-
tem using a POMDP based on WiFi and ultrasound observa-
tions. This design includes: the environment representation, the
states set, the observations type selection, the possible actions
of the robot, and the transition and observation matrix.

3.1.1. Environment representation
In a topological representation of the environment, the

discretization degree is the most important parameter to select
because the processing time depends directly on it. In the
topological map, the nodes should be useful for the robot patrol
application. In this case the robot must be able to navigate in an
autonomous mode inside the corridors. The robot must be able
to stop in front of all the office doors in order to get into the
rooms. This last maneuver will be carried out in teleoperated
mode.

Fig. 4(a) shows an environment example, where the
corridors are discretized into coarse-grained regions (nodes)
of variable size. The limits of these nodes correspond to any
changes in lateral features of the corridor (door, opening or
piece of wall). We have selected two types of nodes: office
nodes (nodes that are in front of office rooms) and extreme
nodes (nodes that are at the end of the corridor). The extreme
sensor can have a connection with a corridor in the left
or in the right, or with an ending room. In Fig. 4(b) the
topological representation is shown, where the extreme nodes
are represented by squares and office nodes are represented by
circles.

Local navigation in corridors is carried out based on
ultrasound range measurements. The low level controller keeps
the robot in the centre of the corridor while navigating,
indicating to the POMDP the occurrence of a transition, such
as a door or a corridor ending.

3.1.2. States set
With this topology, the states of the Markov model are

directly related to the nodes of the topological graph. Two states
are assigned to each corridor node, one for each of the two
main orientations (forward, backward) that the robot can adopt
during corridor following. We denote as forward direction the
direction from node 0 to node 14 in Fig. 4(a), and as backward
direction the opposite one.

3.1.3. Actions set
The actions set has been selected to establish correspon-

dences between transitions from one state to another and local
navigation behaviors of the robot. We assume imperfect actions.
Thus, the effect of an action can be different from the expected
one (this is modeled by the transition model T ).

The action set is very simple in our application due to the
configuration of the states and the local navigation system.
The actions set, depicted in Table 1, is executed by the local
navigation system.

3.1.4. The observations
We select two kinds of observations in our model: the novel

WiFi signal strength measurement observation (obswifi) and the
ultrasound observation (obsus).

The obswifi is obtained as the average value of 60 samples
of the signal strength, received in the WiFi robot interface
from all APs. This filtering is carried out in order to minimize
the high noise of the WiFi signal measures. The number
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Fig. 5. Possible combinations for obsus: (a) door on left side, (b) door on right
side, (c) door on both sides and (d) no doors detected.

of samples has been obtained in a experimental way for
optimal localization. The obswifi is then divided in N different
observations (obswifiAP1, obswifiAP2, . . . , obswifiAPN), one for
each access point.

The mean signal is then rounded to the closest integer value
in order to obtain a discrete space of values. The possible values
that can be obtained from the WiFi interface range from 0
to −99 dBm. We have added an offset to the measure so as
to obtain a positive value that can serve as an index in the
observation matrix.

The obsus is obtained from the ultrasound sensors. Four
different observations are established: door on the left, door
on the right, door on both sides, and wall on both sides.
This way, the possible values are discrete and useful to index
the observation. Fig. 5 shows the combinations for the obsus
and the associated codified values. This observation is easily
obtained from the ultrasound sensors, and leads to a robust local
observation that can be fused with global WiFi observations, as
we explain later on in this paper.

3.1.5. Sensor fusion
Observations from WiFi and ultrasound sensors are

complementary. The first one obtains an estimation of the
global localization while the second one obtains a precise
estimation of the local environment. The fusion of these
observations will produce a good observability of states.

POMDP provides a natural way for using multisensorial
fusion in their observation models (p(Eo | s)) by means of
Bayes’ rule. Because these are independent observations, the
observation model can be simplified in the following way:

p(Eo | s) = p(obswifiAP1, . . . , obswifiAPN, obsus | s)
= p(obswifiAP1 | s) × · · · × p(obswifiAPN | s)

× p(obsus | s). (3)

In Eq. (3) Eo is a vector composed of two types of
observations: obswifi (provided by the WiFi signal strength)
and obsus (provided by the ultrasound sensors).

3.1.6. Actions uncertainty model
The actions uncertainty model represents the real errors or

failures in the execution of actions. The transition function T
incorporates this information to the POMDP. In our case, T is
a matrix that represents the probability of reaching state st+1
when the robot is in the state st and it has executed action at .
The matrix dimensions are n est × n est, where n est is the total
number of states in the topological map.

If the action has no uncertainty, the robot executes an F
action (“Forward”). Consequently, the robot advances to the
next state, which is the ideal case. In a real situation there may
appear some errors that introduce uncertainty in the actions.
Some of them are described in the following:

(1) If a person is in the hollow of the door and he is blocking
the depression of the door, the local navigator shall detect a
depression with a width less than a door. As a consequence
of this, the local navigator will not validate it as a door.
The error in this case is called FF (“Forward–Forward”),
i.e. the robot goes two states forward instead of one. This
case can get repeated for two or more doors, then the error
will be called FFF (for two blocked doors), FFFF (for three
blocked doors) and so on.

(2) If somebody leaves an object in a corridor with the same
width as a door, the local navigator shall validate the object
as a door. This error is called NO (“No-Operation”). In this
case, the robot does not reach the next door.

3.1.7. Observation uncertainty model
The observation uncertainty model represents the real

errors or failures of the sensor systems (ultrasound ring and
WiFi interface). The observation function υ incorporates this
information in the POMDP. In this work, υ is a matrix for
each observation (seven for WiFi observations and one for
ultrasound observations). The matrix dimensions are n est×
obs values, where obs values is the possible observation values
in the current state.

The ultrasound observation uncertainty is bound to the same
cases as in the actions uncertainty. For the WiFi observations,
the error sources are more complex. In indoor environments the
WiFi signal is affected by different factors:

1. Reflections, refractions, and diffractions: that in indoor
environments is known as multi-path fading.

2. Water resonant frequency: WiFi technology operates at
2.4 GHz, which is the water resonant frequency. Therefore,
all persons in the environment can modify the signal strength
received.

3. Free band frequency: we also remark that this frequency is in
the free band frequency where several applications operate,
such as Bluetooth technology, very common in wireless
keyboards and mice.

Due to these factors the signal strength measurement can
be largely modified with respect to the ideal value, and this
variation changes as a function of time.

3.1.8. Training method for obtaining the transition and
observation matrices

In many real systems using POMDPs, the values of the
transition and observation matrices are obtained with a simple
deduction or using a priori expertise. In our case, we use the
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ability of our low level controller to build an autonomous
learning system. The robot navigates in autonomous mode
using ultrasound information alone. The initial state is known
beforehand. Actions are stored in the training action set. Then,
the robot obtains the WiFi and ultrasound observations at each
transition. This information represents the training observations
set. After that, in an off-line stage, we carry out SLAM, based
on a Baum–Welch algorithm (EM algorithm), using the training
sets in order to yield the transition and observation matrices. We
have denoted this technique as WSLAM (Wifi-SLAM).

This process constitutes a learning phase in which the robot
learns the transition and observation matrices. Once this phase
has finished, a tracking phase is executed to track the robot
using the previous matrices.

3.1.9. Politics π

There are different algorithms to solve the selection of the
ideal action to execute in each state. In a POMDP the problem
is more complex than in a MDP because the current state is
unknown. Only a belief distribution is maintained in a POMDP.

In this work we use the Most Likely State (MLS) method
to select the optimal action, because the global observation
provided by the WiFi sensor normally obtains a belief
distribution that exhibits a maximum at the real state. This
method selects the optimal action associated to the most
probable state of the Belief Distribution as shown in (4)

a = πMLS(Bel) = π ∗ (arg max
S

Bel(s)). (4)

4. Low level controller

The local navigation system has three main goals: execute
the action commanded from the POMDP, inform it when a
state transition is detected and place the robot in the optimal
location to measure the WiFi signal. To carry out the state
transition detection, the low level controller uses ultrasound
range measurements. The local navigation system is able to
navigate a robot in a corridor, whatever the state of its doors
and the position of persons walking around it. For this purpose,
the detection of doors in the side of the corridors and the
ending corridor detection are used as key information for local
navigation purposes. Using a door detection procedure instead
of relying on dead-reckoning leads to more robust performance,
as demonstrated in practice, especially for large corridors. Door
detection accuracy can be highly improved by using a model of
a corridor. Thus, deviations from the model can be regarded as
doors, as will be described later on.

When the robot enters a corridor it needs to get the
appropriate orientation in parallel with respect to the corridor
walls. After that, a model of the corridor is estimated based
on ultrasound range measurements. The robot’s local position
(lateral and orientation error with regard to the centre of the
corridor) is measured based on the model of the corridor.
Then, a lateral controller leads the robot to the centre of the
corridor while navigating. When the robot reaches the end of
the corridor a state transition is issued.
Fig. 6. H-shape corridor model.

4.1. Estimation of corridor model

As previously mentioned, the use of a model is crucial in
order to robustly reconstruct the corridor geometry. In this case,
the robot is to operate in straight corridors. Accordingly, an
H-shaped model is adequate to represent the real geometry
of the corridor. For that purpose, the width of the corridor
needs to be a priori known (based on the map) or on-
line estimated. Based on the corridor width, a consistent H-
shape corridor model is computed at each iteration using
least squares techniques. The polynomial equation of the left
wall is constrained by the polynomial equation of the right
wall since they have to be parallel to each other. A H-shape
polynomial model can then be calculated by taking advantage
of this constraint. The adjustment of the H-shape model is
computed in two steps. In a first approach, the parameters
of the individual straight lines describing the left and right
walls (yleft = mleftxleft + bleft, yright = mrightxright + bright)
are obtained based on ultrasound measures using least squares
operators, yielding mleft, bleft, mright, bright, that stand for the
slope (m) and bias (b) of the straight lines representing the
left and right walls, respectively, with respect to a non-inertial
reference frame located at the robot centre of gravity. In the
previous computation, variables yleft, xleft, yright, xright are also
relative to the robot centre of gravity. Based on these variables,
a second step is realized in order to compute the H-shape
constrained model. Let m denote the slope of the H-shape
model, as depicted in Fig. 6. In a first approximative approach,
m can be computed based on mleft and mright by considering
the orientation angle of the H-model to be the average of the
orientation angles of the individual straight lines that describe
the left and right walls. This leads to Eq. (5)

m = tan
(

arctan mleft + arctan mright

2

)
. (5)

Let Ems denote the mean square error existing between the
H-shape polynomial model and the measurements obtained by
the ultrasound sensors, as expressed in Eq. (6)

Ems =

n=Nright∑
n=1

(yln − yH ln)
2
+

n=Nleft∑
n=1

(yrn − yHrn)
2 (6)

where Nleft and Nright denote the number of points associated
in the current iteration to the left and right walls, respectively,
yln and yrn represent the y coordinate of the nth measurement
associated to the left and right wall, and yHln and yHrn stand for
the y coordinate of the nth point corresponding to the left and
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b =

n=Nleft∑
n=1

(yln − m · xln) +

n=Nright∑
n=1

(yrn + W (sin arctan m − cos arctan m) − m · xrn)

Nleft + Nright

Box I.
right edges of the H-shape model that describes the corridor.
Accordingly, the estimation of the appropriate parameters of
the H-shape model is carried out by minimizing the derivative
of Ems. The error can be expressed as a function of the corridor
orientation, represented by parameter m, and also as a function
of parameter b, where b stands for the independent term of the
straight line that describes the centre of the corridor as depicted
in Fig. 6.

The left and right edges of the corridor can then be
constrained by parameters m, b, and the corridor width, denoted
by W . This permits us to compute the derivative of Ems yielding
an expression that depends only on parameter b, assuming that
m is already known, as described by Eq. (7)

dEms

db
=

n=Nleft∑
n=1

2 · (yln − mxln − b) · (−1)

+

n=Nright∑
n=1

2 · (yrn − mxrn − b

+ W · (sin arctan m − m cos arctan m)) · (−1) (7)

where xln and xrn represent the x coordinate of the nth
measurement associated to the left and right wall, respectively.
The minimization of Eq. (7) with respect to parameter b yields
the value expressed in Box I. Upon computation of parameters
m and b, the estimation of the H-shape model that describes
the corridor is complete. The corridor model is computed in
relative coordinates with respect to the robot centre of gravity.
Accordingly, it provides the basis to measure the lateral and
orientation errors of the robot with regard to the centre of
the corridor. Fig. 7 depicts a graphical example of corridor
model estimation during on-line operation. The measurements
associated to the model are represented by green points, while
the corridor model is represented by a couple of straight lines,
as observed in Fig. 7. To avoid perturbations such as doors and
moving obstacles, the distance between the measured points
and the previous corridor model must be below 5 cm in order
to validate the measurement and include it in the estimation
process.

The validation process allows us to easily detect doors in
the corridor walls. Considering the 5 cm validation band, all
doors (either open, closed, or ajar) will be detected as an open
gap in the wall model, as depicted in Fig. 7. Doors can be
robustly detected even in the presence of sporadic moving
obstacles (people walking around) by taking advantage of a
priori knowledge about a door’s typical width. In case the
corridor is overcrowded with moving obstacles, the current door
detection process could fail and further sensors, such as vision
cameras, should be needed for robust door detection. From the
equation given in Box I, variables bL and bR for the left and
Fig. 7. Online estimation of corridor model.

right edges of the wall, respectively, can be demonstrated to be
as expressed in Eq. (8)

bL = b −
W
2

√
m2 + 1

bR = b +
W
2

√
m2 + 1

(8)

where W stands for the corridor width. Based on the equation
given in Box I and Eq. (8) the lateral and orientation error of the
robot with regard to the centre of the corridor can be computed
as in Eq. (9)

θe = tan−1 m

de =
bR

√
1 + m2

−
W
2

(9)

where de represents the lateral error, and θe stands for the
orientation error. A graphical illustration of de and θe can be
observed in Fig. 8.

4.2. Lateral control

The main goal of the lateral controller is to ensure adequate
corridor tracking by correctly keeping the robot in the centre of
it with appropriate orientation (parallel to the corridor walls).
This constraint can be formulated into the minimization of the
lateral and orientation errors. Thus, a model describing the
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Fig. 8. Lateral and orientation errors (de, θe) with respect to the centre of the
corridor.

dynamic behavior of de and θe is needed in order to design a
stable lateral controller.

4.2.1. Kinematic model
The robot configuration space is composed of the global

position and orientation variables described by (x, y, θ), while
the robot angular velocity ω and linear velocity v are the
variables of the robot actuation space. Mapping from the
actuation space to the configuration space can be solved by
using the so-called dead reckoning equations as expressed in
Eq. (10)

ẋ = v · cos θ

ẏ = v · sin θ

θ̇ = ω.

(10)

Let’s remark that v represents the velocity of the robot centre
of gravity, denoted as the control point. The kinematic model in
terms of global position and orientation of the robot is converted
into a kinematic model in terms of relative coordinates. As
observed in Fig. 8, de is defined as the distance between the
robot control point and the closest point (xd , yd) along the
desired trajectory. This implies that de is perpendicular to the
straight line that describes the centre of the corridor at (xd , yd).
The tangent of the slope of the central line is denoted by θd . It
represents the desired robot orientation. Based on this, de and
θe suffice to precisely characterize the location error between
the robot and the centre of the corridor, as described in Eq. (11)

de = −(x − xd) · sin θd + (y − yd) · cos θd

θe = θ − θd .
(11)

The derivatives of de and θe with respect to time are
demonstrated in Eq. (12), while the complete non-linear
kinematic model for de and θe is formulated in Eq. (13)

ḋe = −ẋ sin θd + ẏ cos θd = v sin(θ − θd) = v sin θe

θ̇e =
d(θ − θd)

dt
= θ̇ − θ̇d = θ̇ = ω (12)

ḋe = v sin θe

θ̇e = ω. (13)

4.2.2. Non-linear lateral controller
The lateral error de and the orientation error θe must be

minimized in order to lead the robot along the centre of the
corridor. For simplicity, the robot linear velocity v is assumed
Fig. 9. Graphical description of variable ς .

to be constant. The design of the control law is based on
general results of the so-called chained systems theory [15].
An excellent example on this topic can be found in [16,17].
The use of the popular tangent linearization approach is avoided
since it is only locally valid around the configuration chosen to
perform the linearization, and thus the initial conditions may be
far away from the reference trajectory. On the contrary, some
state and control variable changes are proposed in order to
convert the non-linear system into a quasi-linear one, termed as
a chained form. Thus, the non-linear model for de and θe can be
transformed into a chained form using the state diffeomorphism
and change of control variables shown in Eq. (14)

Y =

(
y1
y2

)
= Θ(X) =

(
de

tan θe

)
W =

(
ω1
ω2

)
= Γ (U ) =

(
v cos θ3

ω

cos2 θe

)
.

(14)

These transformations are invertible whenever the robot linear
velocity is different from zero. Based on Eq. (15), the kinematic
model can be rewritten as in Eq. (15), considering y1 and y2 as
the new state variables.

ẏ1 = v sin θe = ω1 y2

ẏ2 =
d(tan θe)

dt
=

1
cos2 θe

· θ̇e =
ω

cos2 θe
= ω2.

(15)

In order to get a velocity independent control law, the time
derivative is replaced by a derivation with respect to ς , the
abscissa along the direction parallel to the centre of the corridor,
as graphically depicted in Fig. 9.

Analytically, ς is computed as the integral of linear velocity
vς , measured along axis ς . The expression of ς is provided in
Eq. (16)

ς =

∫
vς dt =

∫
v cos θedt ⇒ ς̇

=
dς

dt
= v cos θe = ω1. (16)

The time derivative of state variables y1 and y2 is expressed
as a function of ς in Eq. (17)

ẏ1 =
dy1

dt
=

dy1

dς
·

dς

dt
= y′

1 · ς̇

ẏ2 =
dy2

dt
=

dy2

dς
·

dς

dt
= y′

2 · ς̇

(17)
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Fig. 10. Time invariance of the WiFi signal.
where y′

1 and y′

2 stand for the derivative of y1 and y2 with
respect to ς . Solving for y′

1 and y′

2 leads to Eq. (18)

y′

1 =
ẏ1

ς
=

v sin θe

v cos θe
= tan θe = y2

y′

2 =
ẏ2

ς
=

ω

v cos3 θe
= ω3.

(18)

As observed in Eq. (18), the transformed system is linear and
thus state variables y1 and y2 can be regulated to zero by using
the control law proposed in Eq. (19)

ω3 = −Kd y2 − K p y1 (Kd , K p) ∈ R+2. (19)

Using Eqs. (18) and (19), the dynamic behavior of y1 with
respect to ς is demonstrated to be linear, as shown in Eq. (20)

y′′

1 + Kd y′

1 + K p y1 = 0. (20)

This implies that variables y1 = de and y2 = tan θe tend to
zero as variable ς grows. The previous statement is analytically
expressed in Eq. (21)

lim
ς→∞

de = lim
ς→∞

.θe = 0. (21)

Accordingly, variable ς must always grow so as to ensure that
the lateral and orientation error tend to zero. This condition is
met whenever v > 0 and −π/2 < θe < +π/2. In other words,
the robot must continuously move forward and the absolute
value of its orientation error should be below π/2 in order
to guarantee proper trajectory tracking. Thus, the non-linear
control law is finally derived from Eqs. (18) and (19) and
formulated in Eq. (22)

ω = arctanb−v cos3 θe(Kd tan θe + K pde)c. (22)

The control law can be modified by a sigmoidal function
to account for physical limitations in the robot wheels’ turning
angle and prevent actuator saturation. On the other hand, the
use of sigmoidal functions preserves the system stability [18].
Finally, the tuning of constants (Kd , K p) can be properly done
by following the method proposed in [16].
5. Implementation and results

The local navigation system described in this paper was
tested on the two prototypes shown in Fig. 2, BART and
SIRA. The robots have the following configuration: Orinoco
PCMCIA Gold wireless card, Linux Red Hat 9.0 operating
system, wireless tools by Jean Tourrilhes [19], Orinoco driver
patch by Moustafa A. Youssef, a 16 ultrasound sensor ring and
a SONY pan–tilt–zoom camera.

Practical experiments were conducted in the 3rd floor of
the Electronics Department in the University of Alcalá. This
section is organized as follows: first, the WiFi signal is
measured to obtain the constraints of the low level controller,
then several experiments are carried out to test it as a valid low
level controller for this application, and finally several statistics
will be obtained.

Fig. 10 shows the result of measuring the WiFi signal during
one complete day at a 1 second period in a stationary position
of the environment. As we mentioned in Section 2, this test
provides an idea about the time invariance of the signal.

It is important to note that the signal varies much more in
AP1 than in AP2 during the operation time (from 16:00 to
21:30). This figure shows the presence of a multi-path effect
in the WiFi signal measurement, as well as the pernicious effect
of the people and wireless devices, such as Bluetooth keyboards
and mice.

An example of large scale variations is shown in Fig. 11.
The robot was located at the 67 positions shown in Fig. 1(b).
We took 300 samples for each position and then we obtained
the mean value. Fig. 11 represents these mean values for
access points AP1 and AP2. The figure shows the difficulty in
building a propagation model for indoor environments. This is
the justification that supports the use of a previous radio map
for WiFi localization systems in indoor environments.

The small scale variations are related to the lateral error
of the low level controller as mentioned in Section 2. After
several experiments in our environment we conclude that the
maximum small scale variations that we obtained were in 3

4λ

(approximately 9 cm). This distance represents the maximum
lateral error that the controller can assume.
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Fig. 11. Large scale variations in AP1 and AP2 WiFi signal measure.
Fig. 12. Real results for a complete route in one corridor with v = 20 cm/s and initial orientation = 3◦.
Another important variation that suffers the WiFi signal
measure is the large orientation. For testing this variation we
carried out a lot of experiments to extract some conclusions. For
this purpose, the histograms of all visible APs at each position
were obtained, concluding that these are useful for obtaining
the four basic orientations. In this manner, we can extract
the basic orientation of the robot. This is a very interesting
point in a localization and navigation system for autonomous
robots.

Other tests that we have carried out have demonstrated the
presence of small orientation variations in the WiFi signal
measurement. These small orientation variations represent a
new constraint of the low level controller. The tests were
carried out in several positions of our environment and we
conclude that the maximum small orientation variations appear
for orientations higher than 6◦. Then, this is the maximum
orientation error that the controller can assume.

Various practical trials were conducted to test the validity
of the controller in the global navigation system for different
initial conditions in real circumstances. During the tests, the
reference robot velocity is assumed to be kept constant. The
robot linear velocity is set to 20 cm/s and the initial orientation
was fixed to 3◦. Fig. 12 depicts the lateral error, the orientation
error, and the commanded angular velocity during online
operation, in which the robot was located at the beginning of a
corridor. From that point the robot navigated until reaching the
end of the corridor. Upon acquisition of ultrasound measures,
the robot gets the adequate orientation in order to get parallel to
the corridor walls. As observed in Fig. 12, both de and θe tend
to zero as the robot moves forward.

In the next trial the reference robot velocity was also
assumed to be kept constant. The robot linear velocity is
set to 20 cm/s and the initial orientation was fixed to 3◦.
Fig. 13 depicts the lateral error, the orientation error, and
the commanded angular velocity during this new operation in
which the robot was located at the end of corridor 4 (see Fig. 1).
From that point the robot navigated until reaching the end of
corridor 3, carrying out the corresponding changes of corridor
employing a basic spline. As can be observed in the next figure,
both de and θe tend again to zero as the robot moves forward.
It is important to note that the lateral error was not higher than
6 cm and the orientation error was not higher than 4◦ even when
the robot carried out the changes of corridor (for times 80 s and
140 s).
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Fig. 13. Real results for a complete route in three corridors with v = 20 cm/s and initial orientation = 3◦.
Fig. 14. Results from 40 experiments in lateral error (%).

Fig. 15. Results from several experiments in orientation error (%).
We have programmed several targets for the POMDP and
obtained the lateral and orientation error of the robot. Fig. 14
shows the statistics for the lateral error obtained from 40
different targets. The lateral error has been divided by ranges
referenced to the wavelength. As can be seen in Fig. 14, the
accumulated probability that the lateral error is less than 1

2λ is
70%.

With the same 40 targets in the POMDP we have obtained
the orientation error. Fig. 15 shows a statistic of orientation
error. The errors have been divided by ranges, but in this case
they are referenced in degrees. The accumulated probability
that the orientation error is less than 6◦ is 90%.

In both cases the accumulated percentage between the
constraint margins allows us to obtain WiFi observations with
low uncertainty. Therefore we can state that the low level
controller developed in this work meets the constraints for
being successfully deployed in a WiFi-based localization and
navigation system.

To check the robustness of the global system as a function
of time, we programmed 50 chained targets. The robot was
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Table 2
Global results comparison with López 2004

This work López 2004
Number Percentage (%) Number Percentage (%)

Successful Direct path 45 90 35 70
Indirect path 4 8 11 22

Failures Incorrect target 1 2 2 4
Loops 0 0 2 4
navigating for 3 hours and we obtained a few localization errors
as can be seen in Table 2. These results are compared with the
results obtained in the work of López (2004) [13] and Simmons
(1997) [14], where the observations used were ultrasound and
computer vision.

“Direct path” means that the target is reached following
the ideal trajectory while “Indirect path” means that the target
is reached after a recovering maneuver. As can be seen in
the table, the total percentage of successful navigations was
slightly higher than in López (2004), 98% versus 92%, but
it is interesting to note that the direct path percentage was
90% which is much higher than in López (2004) with 70%. In
Simmons (1997), the authors only obtained 90% of successful
navigations in similar environments.

6. Conclusions

To conclude, the next key points should be remarked.

• First of all, the low level controller described in this
work has been proved in two real Pioneer 2AT robots
within a POMDP based on WiFi observations. It has been
demonstrated that it is useful to obtain low uncertainty
observations as long as they exhibit small scale and
orientation errors.

• We have presented a navigation system for autonomous
robots in indoor environments using a POMDP based on
WiFi and ultrasound observations. According to the authors’
knowledge this is the first work that uses this kind of
observation in a POMDP.

• By combining a low level controller and a POMDP, a robust
autonomous navigation system for indoor environments has
been achieved. In fact, the robot is able to recover its position
in spite of sensor uncertainty. It is specially recommended
for localization and navigation in environments that are
structured into corridors, where the H-shape model is easily
obtained by means of ultrasound sensors.

In future, we will try to speed up the algorithm. Then, WiFi
observations will be taken only in the interesting states, such as
at the end of corridors, thus obtaining a faster and more robust
algorithm for real applications.
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currently a Lecturer. His research interests include
computer vision and control systems for autonomous
and assisted intelligent vehicles. He is the author of
more than 30 refereed publications in international

journals, book chapters, and conference proceedings.

http://www.hpl.hp.com/personal/Jean%5FTourrilhes/

	Low level controller for a POMDP based on WiFi observations
	Introduction
	WiFi signal measure
	Test-bed
	Main WiFi signal variations

	Description of the POMDP
	Design of the  POMDP  navigation system
	Environment representation
	States set
	Actions set
	The observations
	Sensor fusion
	Actions uncertainty model
	Observation uncertainty model
	Training method for obtaining the transition and observation matrices
	Politics  pi


	Low level controller
	Estimation of corridor model
	Lateral control
	Kinematic model
	Non-linear lateral controller


	Implementation and results
	Conclusions
	Acknowledgements
	References


