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Abstract— The future of autonomous vehicles and driver
assistance systems is underpinned by the need of fast and
efficient approaches for road scene understanding. Despite the
large explored paths for road detection, there is still a research
gap for incorporating image understanding capabilities in in-
telligent vehicles. This paper presents a pixelwise segmentation
of roads from monocular images. The proposal is based on
a probabilistic graphical model and a set of algorithms and
configurations chosen to speed up the inference of the road
pixels. In brief, the proposed method employs Conditional
Random Fields and Uniformly Reweighted Belief Propagation.
Besides, the approach is ranked on the KITTI ROAD dataset
yielding state-of-the-art results with the lowest runtime per
image using a standard PC.

I. INTRODUCTION

Nowadays, visual robust recognition of the driving path is
a key issue in the develop of autonomous vehicles, which
need to reliably operate under complex traffic situations
and naturalistic road environments [1], [2], [3]. Besides,
the Intelligent Vehicles community is making great efforts
to incorporate road scene understanding capabilities in ever
more sophisticated Advanced Driver Assistance Systems
(ADAS), e.g., lane departure warning [4] and adaptive cruise
control [1], which are mainly focused on traffic safety.

Indeed, urban objects which attract a biggest interest from
the driver’s point of view, are always on the ground, ex-
cluding some traffic signs and traffic lights. Moreover, there
is a pose relation between the objects in a road scene with
respect to the road (e.g., vehicles, pedestrians, vegetation,
buildings, sky, etc). As a consequence, road detection is
an important research topic because it allows to impose
geometrical constraints for the driving activities (autonomous
or driver assistance) and for the detection of objects. Thus,
it also improves the road scene understanding

On the other hand, the employment of monocular vision
systems in ADAS and autonomous driving for the task of
road detection is relatively inexpensive and easy to integrate.
They capture the 3D scene as perceived by a driver, who per-
forms a local navigation based on the scene features, while
global way-points can still be established by other navigation
techniques (e.g., GPS and pre-computed maps). Nonetheless,
road segmentation using monocular vision is not a simple
task, being specially challenging in rural areas and inner-
cities due to the usual absence of lane markings [2].
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This paper presents a practical study of the pixelwise
road segmentation combining harmoniously computer vision
techniques and Probabilistic Graphical Models (PGMs). Par-
ticularly, the semantic labeling of the pixels in the road scene
images relies upon Conditional Random Fields (CRFs) [5]
and approximated marginal inference [6].

This robust probabilistic approach is able to work in
road scene without markings. In addition, compared to
other proposals in the state-of-the-art [7], this paper also
contributes with a fast and efficient technique to perform
road inference from monocular images. Our main goal is
to run the algorithm under real time constraints, such that
it could be embedded on-board vehicles. Therefore, our
proposal is based in the following steps: Firstly a region of
interest is selected based on an estimation of the horizon
line. This is the image area where it is more likely to
find the road. Secondly, we implement a fast pixelwise
road inference based on the robust probabilistic approach
mentioned above. Thirdly, inspired in the recent works about
visual place recognition with low resolution scenes [8],
our approach reduces the size of road images based on
superpixels, resulting in miniaturized scenes [9] which are
efficient to compute. Finally, morphological operations are
applied to deal with scaling artifacts and misclassified pixels.
An overview of this workflow is depicted in Fig. 1.

Fig. 1: Overall system workflow. Down and up arrows
correspond with the downsample and upsample performing
with superpixels.

The proposed methodology is validated on the public
KITTI-ROAD benchmark [2], ranking the second in “Urban
Multiple Marked lanes” and fourth in the global “Urban
Road” category. Moreover, our contribution is the fastest
approach in the ranking, achieving real time performance
on a standard PC without the need for a dedicated GPU.

The remainder of the paper begins with an overview
of related works on road segmentation. Next, Sections III
to VI describe our methodology, which includes the pre-
and post-processing stages, the learning and inference with
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CRFs and the description of the employed visual features.
Section VII provides some implementation details and Sec-
tion VIII shows the experimental results on KITTI ROAD
dataset.

II. STATE OF THE ART

Road detection is a difficult task due to many reasons,
including the absence of lane markings, variations in lighting
conditions, different road surface materials, occlusions with
other vehicles and objects, etc. Typically, the most used
approach for segmenting marked roads is the localization
of the markings [10], [11]. However, for unstructured roads
and structured roads without remarkable boundaries, road
segmentation must be addressed from a different perspective.

Methods based upon segmenting the road using color
cues have been proposed [12]. However, they do not work
well when the roads surfaces have slight color differences
compared to the scene environment. Besides, they may also
fail in situations with strong shadows and highly illuminated
areas. On the other hand, color and texture features em-
ployed in [13] in conjunction with Artificial Neural Networks
(ANN) are exposed to some limitations in appearance, i.e.,
roads can present aperiodic texture, which is hard to charac-
terize.

Although the detection of the vanishing point [14], fol-
lowed by the segmentation of the corresponding road area
was probed to be robust against variations in illumination
and the road type, this approach may fail with curved roads,
heavy traffic and strong shadow edges.

Alternatively, Vitor et al. [15] create a set of probabilistic
models using an adapted version of the Joint Boosting
algorithm with Texton and Diston feature maps. Essentially,
the method consists on a set of weak classifiers analyzing
color and disparity information. Although this work achieves
state-of-the-art results for the road segmentation, the classi-
fier requires 2.5 minutes for each frame. SPRAY [16] also
proposes a set of classifiers (boundary, road and marking)
creating three confidence maps. However, it runs faster than
the previous one and it yields road recognition improvements
in the KITTI ROAD benchmark. Nonetheless, this real time
performance is at the expense of using a powerful GPU.

Moreover, a recent work by R. Mohan [17] combines
Deep Deconvolutional and Convolutional Neural Networks
for the general task of scene parsing. Compared to different
engineered features election methods, this is an alternative
technique to automatically learn features directly from the
images. This method is currently ranking first on KITTI
ROAD benchmark. However, this approach is computation-
ally intensive and it requires a GPU cluster to process the
data.

Therefore, our contribution aims at carrying out an effi-
cient semantic labeling of monocular images, with a particu-
lar emphasis on road segmentation. The computation time
will be reduced during the inference stage, while, at the
same time, relying on a complex and robust machine learning
methodology, i.e., Conditional Random Fields.

III. PREPROCESSING OF THE ROAD SCENES

Assuming that the images are captured from an on-board
camera in a moving vehicle, the road detection process can
be bounded to a specific region of interest (ROI), due to
physical and continuity constraints. This ROI is where the
road is more likely to be found on the images.

Therefore, we propose to filter out the area of each road
scene which is not expected to contain any road pixels based
on the horizon line. This preprocessing step discards a large
region of the image, reducing the computational cost. A
rectangular mask will remove the pixels that are out of the
expected region of interest (ROI), which contains the road.
The height h of the ROI depends on the estimation of the
horizon line of the urban scenes, while its width w equals the
image width. To estimate the horizon line, a set of training
images are employed to detect the vanishing points of the
scenes. In particular, we use the locally adaptive soft-voting
scheme proposed by Kong et al [14]. Then, a value for h is
obtained, also leaving a certain margin about the mean height
of the vanishing points.This idea is depicted in Fig. 2.

Fig. 2: Rectangular mask filters out non-road expected pixels
and the ROI contains the road. The horizon line is estimated
from a set of training images.

IV. MODEL LEARNING AND ROAD INFERENCE

To detect the road pixels in urban and interurban images,
our approach assigns semantic labels to the superpixels taken
from the preprocessed following the technique published by
the authors in [9]

To model the uncertainty associated to this classification
process, a probabilistic approach is proposed, which relies
upon Conditional Random Fields (CRF) [5]. This is a PGM
that represents the conditional probability distribution p(y|x)
where x is a vector denoting the observed data (visual
features in our case) and y is a tuple of variables that have to
be estimated (either latent or not). Hence, it is not needed to
explicitly model p(x) thanks to the conditional formulation.
For the road segmentation case, the vector y is related to
the array of output classes from the superpixels. Each of
them takes its values from a set of labels L defining the two
possible semantic classes: road and off-road.

A. CRF model

CRFs can be represented by undirected graphs, in which
the nodes are random variables and the existence of a link
between nodes defines conditional dependencies between
the involved variables. Particularly, this paper presents a
pairwise CRF model with a grid-like structure whose nodes
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correspond to a lattice of superpixels in a 4-neighborhood
on the ROI described in Section III. This structure allows
us to encode spatial dependencies inside the images in an
easy way, as can be seen in Fig. 3. At each node i an
output random variable yi is defined, taking a value from
a set of labels L = {0, 1} corresponding to off-road and
road respectively. Besides, the observable random variable
xi encodes the values of certain local features that will be
exposed in Section V.

Fig. 3: Graph of the CRF model aligned with the ROI.

The probability distribution of the semantic labels vector
y conditioned on the observed features x and a vector of
unknown model parameters w can be factored in a product
of unary (ψi) and pairwise (ψC) positive factors [5], called
potentials:

p(y|x;w) =
1

Z(x;w)

∏
i

ψi(yi,x;wi)
∏
C
ψC(yi, yj ,x;wC)

(1)
The first product in (1) is over all individual nodes i, while

the second one is over the set of cliques C of order two, i.e.,
the edges in the graph which model neighboring superpixels
interactions. Z(x;w) is known as the partition function for
normalization purposes.

Furthermore, the graphical model in Fig. 3 is not tree-
structured, but instead contains cycles. As a consequence,
the CRF presents two issues:

1) Exact inference is known to be NP-hard.
2) Learning is intractable and can also generate poor

predictions when the model is misspecified.
The first issue can be solved performing approximate

inference with some method like Loopy Belief Propaga-
tion [5] or Tree-Reweighted Belief Propagation [18]. In this
paper, we employ the latter one because of its demonstrated
effectiveness to reach the global minimum in binary image
segmentation. Next, to solve the second issue, we propose
to employ a recent work of J. Domke [6], which presents a
parameter learning based upon approximate marginal infer-
ence instead the usual approach based on approximations of
the likelihood.

Then, the automatic semantic labeling of the road scenes
is divided into two basic stages: the off-line and more
computationally demanding process of model learning and
the online semantic inference with much less computational
demand. They can be also referred to as training and testing
stages from a classification point of view.

B. Inference

Inference will be treated in first place, before learning,
because its engine is employed both during prediction and
model training. As already indicated in previous section,

our method for approximate inference is based on Tree-
Reweighted Belief Propagation (TRW) [18]. With the aim
of providing a fast and efficient approach for road detection,
this inference algorithm has been implemented in C++ as we
describe in this section.

Firstly, the main formulation of the message-passing ap-
proach is reproduced here for clarity. At each iteration, every
node i of the graph sends a message mC(yi) to its neighbor
Ni in the clique. Then, the message passing update is:

mi→j(yj) ∝
∑
i

ψi(yi,x) · ψ
1
ρij

ij (yj , yi,x) · η

η =
1

m
1−ρij
j→i (yj)

∏
n∈Ni\j

mρni
n→i(yi)

(2)

where Ni is the set of neighbors of node i, coefficients
ρij are called edge appearance probabilities indicating the
probability that a given edge appears in a spanning tree of
the graph and ∝ means assigned after normalization.

After the messages have converged, each node can form
an estimate of its local approximate marginal defined as,

µi(yi) ∝ ψi(yi)
∏
n∈Ni

mρni
n→i(yi) (3)

In particular, we use a simplified version of TRW, Uni-
formly Reweighted Belief Propagation [19] assigning a con-
stant appearance probability to all edges, thus ρij = ρ∀ i, j.
It reduces the computational complexity being also an opti-
mal choice for our graph structure. Besides, this simplified
scheme turns out to outperform Belief Propagation (BP) in
graphs with cycles. Also, note that in the special case of
ρij = 1, TRW simplifies into local BP.

Additionally, it must be noted that according to [20], the
optimal value of ρ for graphs, satisfying certain symmetry
conditions as in our case, can be approximated with the
number of vertices (|V |) and edges (|E|) using (4).

ρ∗ ≈ |V | − 1

|E|
(4)

In general, it can be stated that this parameter tends to
0.5 for bigger grid graphs like ours. Although this is not
necessarily the optimum, it is the largest number that leads
to a convex inference problem.

C. Learning

The aim of learning is to select the optimal model from
its feasible set, based on the training data, obtaining the
vector of parameters w∗. Using a loss-based approach [5],
the learning formulation is as follows:

w∗ = arg min
w

∑
∆(y, t;w) (5)

where ∆(y, t;w) denotes a loss function measuring the
similarity between the ground-truth training labels t and
the estimated labels y. Thus, the choice of parameters w
influences the loss function through y.

As for the impossibility to compute the true marginals
in our not tree-structured graphical model, the loss func-
tion is defined with respect to the marginal predictions.
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To minimize (5), the loss gradient has to be calculated,
which can be very expensive, requiring many message-
passing iterations. To reduce the expense of such training,
we first use the truncated fitting alternative [6] to compute
a predicted marginal using TRW. Indeed, five iterations are
selected to truncate the message-passing. Then, we back-
propagate predicted marginals making slight modifications of
the parameters to reduce and adjust the loss. This process is
repeated until the loss is lower than a configurable threshold.

Furthermore, the choice of the loss function is important
because, on the one hand, it influences the accuracy, and on
the other hand, the simpler the loss the easier the gradient
is to compute. Particularly, we employ the conditional lo-
gistic loss [21] evaluated on the cliques and given by (6).
This function ensures the consistency between the predicted
marginals and joint distribution when using our CRF model.

∆ = −
∑
C

logµ(yC |x;w) (6)

V. IMAGE FEATURES FOR THE CRF POTENTIALS

Since our graphical model has a pairwise grid-like struc-
ture and according to the presented CRF formulation into
unary and pairwise potentials in (1), two types of feature
functions will be encoded in the model: node features
and edge features. These can be described by exponential
functions using log-linear combinations of features extracted
from the observed data x. This is due to the fact that the
potentials are restricted to be positive. Thus:{

ψi = exp(wi
T · fi(x)) (7a)

ψC = exp(wC
T · gC(x)) (7b)

In (7a) fi is a vector-valued function that defines the
features of node i; similarly in (7b), gC is another vector that
maps the input to pairwise features of nodes in the clique
C. This idea is illustrated in Fig. 4. In both cases, we carry
out a feature scaling or whitening to speed up and favor
the gradient-descent loops in the learning phase. Basically,
the procedure consists in scaling the features, subtracting the
mean, and dividing by the standard deviation.

Fig. 4: Portion of the proposed graphical model. The node
and edge features are overlaid in blue and red, respectively.

A. Node features

Several features are extracted to represent the visual ap-
pearance related to every node of the graph. They carry
information about color, position, texture and shape that are
concatenated into fi to span a rich feature space.

Firstly, we propose to incorporate observations describing
the color distribution in the scene. After testing different
color spaces as RGB, HSV, Lab and grayscale, we empiri-
cally found that HSV yielded the lowest overall errors. Then,
we experiment serializing the components hue and saturation,
quite immune to scene illumination changes in a (2k + 1)
squared patch around a pixel for the values k = 0, 1, 2.
We found that the use of bigger patches did not improve
road detection performance, but it raised computation time
considerably. In particular, increasing the dimensionality
from 2D (k = 0) to 50D (k = 2) produces a 2% increase in
accuracy at a cost of approximately doubling the computation
time. Thus, we decided to obtain a vector of two values for
each node with the intensities for the components hue and
saturation.

As already described in [9], we add a set of features which
are summarized next. Two features, fu and fv , account for
the normalized position along the horizontal and vertical
axes. Also, the texture of the roads is captured in the
form of LBP descriptors. In particular, we employ P = 4
sampling points and a radius R = 1 pixel, obtaining a feature
function fLBP of 2P = 16 elements. Besides, the local
appearance and shape is acquired as HOG vectors over a
grid of non-overlapping 8 × 8 cells, with 9 orientation bins
per cell, concatenating 4 cells to one block descriptor. After
normalizations, a 36-dimensional vector fHOG is obtained.
According to our experiments fHOG and fLBP are the most
discriminative features in terms of the overall accuracy.

As a result, the observation variables Xi associated to each
node in the presented graphical model (see Fig. 3) correspond
to 56-dimensional feature vectors (D = 2+2+16+36 = 56),
which populate the potentials of the CRF formulation.

B. Edge features

The relations between the adjacent nodes in the undirected
graph are incorporated into the model by the edge features. In
brief, they consist of [9]: a bias feature to capture any effects
on the states of the random variables that are independent
on the other features, and the discretized L-2 norm of the
difference of hue and saturation intensities for two neighbor
nodes. The resultant 11D vector is doubled in size and
arranged differently depending on whether the edges are
vertical or horizontal allowing us to separately parameterize
vertical and horizontal edges.

VI. POST-PROCESSING

The output from the presented road segmentation approach
and for every input image is a set of predicted pixels that are
likely to belong to a road in the real world scenes. However,
some of the pixels from output variable nodes (yi) in our
proposed graphical model may be misclassified due to feature
scaling artifacts. In particular, the presence of small specks
classified as “road” in a large area corresponding to “off-
road” and vice versa. An example of these small specks and
holes is illustrated in Fig. 5.b.

To deal with these specific misclassifications, a morpho-
logical opening is done to eliminate the specks classified
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like “road” and a morphological closing is performed to
eliminate the specks classified like “off-road”. In both cases,
a rectangular structuring element of 15×15 size is employed.
Fig. 5 shows some real examples on this regard.

(a) (b)

(c) (d)

Fig. 5: Post-processing of a sample result from the pixelwise
road inference: (a) input image (b) predicted pixel labels (c)
removal of false positives using a morphological opening (d)
removal of false negatives using a morphological closing.

VII. IMPLEMENTATION DETAILS

Since training and inference tasks are computationally
expensive, we seek a practical approach to reduce the com-
putation time. Besides, inspired on recent works of visual
place recognition with low resolution images we also opt
to study and test lower resolutions in the dataset employed
in Section VIII. To do that, once the features have been
computed on the original images, we reduce their resolution
by using superpixels and we subsample the ground-truth
labels accordingly to a percentage of the original size. Once
the approximate marginals are calculated, we upsample them
to the original resolution. With this approach, we shrink the
space of hypotheses and achieve a speed-up both in training
and testing stages, but more notable during inference, which
is the application-oriented part of the algorithm.

For training we employ the Toolbox of Justin Domke [22],
mainly developed in MatLab with some Mex files to speed
up certain algorithms. Time reduction is not a priority for the
training task. However, to meet real-time restrictions during
inference and to build a code easier to integrate into Advance
Driver Assistante Systems (ADAS), we implemented the
preprocessing, the inference and the postprocessing stages
in C++, employing two open-source libraries: OpenCV and
Eigen for the vision and linear algebra operations.

VIII. EXPERIMENTS

The public KITTI ROAD [2] dataset is employed for
evaluation. It consists of 600 frames (≈ 375× 1242 pixels)
extracted from several video sequences at a minimum spatial
distance of 20 meters. Besides, it is split in three subsets,
each representing a typical road scene category in inner
cities: urban unmarked (UU), urban marked two-way road
(UM) and urban marked multi-lane road (UMM), having
each one a subset of training and test images. Besides,
URBAN-ROAD quantifies the previous three categories in
a single set of measurements.

Table I shows the effectiveness of our approach, abbre-
viated as PGM-ARS, to extract the road while varying the
reduction percentage of the image resolution evaluated with
5-fold cross validation on the training images. All evaluations
are performed in the called “bird eye view” due to is best
suited for vehicle control [2] using the standard metrics
precision and recall.

TABLE I: Road estimation results obtained for different sizes
of the validation images. All results are in %

UU UM UMM
Img Res PRE REC PRE REC PRE REC

5 % 72.49 76.80 71.13 81.69 83.33 90.08
10 % 79.90 80.92 75.11 86.63 89.83 93.02
15 % 79.50 81.34 75.65 86.88 89.80 93.66
20 % 82.75 83.96 84.44 87.53 90.07 94.26
25 % 82.52 84.13 84.34 88.04 89.84 94.58
30 % 82.22 84.53 83.10 88.31 89.76 94.67
40 % 82.05 84.79 82.69 88.54 89.55 94.88
50 % 81.88 85.24 82.08 88.72 89.15 94.92

The highest precision values are obtained for 20% image
resolution, whereas the recall values are slightly increased
with the resolution. In fact, the gain between 20% and 50%
rows is lower than 1.5% for all categories.

Therefore, there is not much improvement for increasing
image size. Our explanation for this result is twofold. In first
place, bigger images have more granular detail, partly reduc-
ing the intra-region similarity. Secondly, in lower-resolution
models, there are fewer intermediate variables, facilitating
the spread of messages and the CRF model convergence.
These results validate our superpixels hypothesis as the
optimal way for segmenting complex images with a fair
time processing. Besides, due to memory limitations during
training, we have not been able to test percentages over 50%.

According to the previous cross-validation experiments,
we opt to reduce the images at 20% and then evaluate the
road segmentation performance on the testing set. At this
small resolution, inference is computationally efficient re-
quiring less than 50 ms per image in a i7-4700MQ processor
and without a big loss in accuracy. The results are shown in
Table II using standard Kitti metrics where MaxF represents
the maximum F-measure (from precision and recall curves)
and AP the average precision respectively [2].Fig. 6 illus-
trates some of the predicted samples. It can be observed that
the precision values are degraded for UM and UU categories.
This is explained by an increase of false positives in complex
scenes in which parking lots, garage entrances and crossroads
have a road appearance. Our algorithm classifies them as
road, but they are “off-road” in the ground-truth.

Next, Table III depicts the most representative entries
in the public KITTI ROAD benchmark. Our PGM-ARS
proposal is placed among the state-of-the-art. We obtain
similar values at much lower time costs, but ranking second
in roads with multiple marked lanes (UMM_ROAD) and
fourth in the general UM_ROAD category among monocular
approaches to the date of April 2015. Besides, the proposals
achieving higher accuracies require longer computation times
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TABLE II: Road estimation results on the test set images

Benchmark MaxF % AP % PRE % REC %
UM_ROAD 81.20 69.82 78.32 84.30

UMM_ROAD 90.95 85.68 88.86 93.14
UU_ROAD 79.82 68.33 77.97 81.76

URBAN_ROAD 85.52 74.75 83.24 87.92

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Examples of road detection images for the test set
obtained from the public benchmark suite, red denotes false
negatives, blue areas correspond to false positives and green
represents true positives (a),(b) UU; (c),(d) UM; (e),(f) UMM

and more hardware resources compared to ours. It must be
also noted that our approach uses monocular images and does
not require stereo vision nor 3D points.

IX. CONCLUSIONS AND FUTURE WORKS

This paper has presented an efficient method for road
detection in monocular images. It proposed a fast pixelwise
road inference using a robust probabilistic graphical model,
i.e. CRF and Uniformly Reweighted Belief Propagation.
Different visual features have been selected to efficiently
exploit the context and pixel dependencies in the road
scene. The employment of superpixels from reduced images
and the C++ implementation of the inference stage have
contributed to achieve real-time performance, which may
ease its integration into ADAS and autonomous driving
systems. Experiments conducted on KITTI ROAD dataset
have shown that the overall accuracy of our proposed PGM-
ARS is among the state-of-the-art performance but achieving
the lowest runtime per image in an standard CPU.

TABLE III: Comparison of KITTI URBAN-ROAD state-of-
the-art

Method Setting MaxF Runtime Environment
DDN Mono 92.55% 2 s GPU @ 2.5 Ghz (Python + C/C++)

ProBoost Stereo 87.21% 2.5 min >8 cores @ 3.0 Ghz (C/C++))

SPRAY Mono 86.33% 45 ms NVIDIA GTX 580 (Python + OpenCL)

PGM-ARS Mono 85.52% 50 ms 4 cores @ 2.1 GHz

RES3D-Velo Laser 85.49% 0.36 s 1 core @ 2.5 Ghz (C/C++)

In the next future, our intent is to extend this work for
multi-class road scene segmentation and to further study the
difficult cases of UU and UM categories.
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