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Abstract— Traditional perception systems in automated driv-
ing have different constraints that do not allow for com-
plete environmental awareness. Cooperative Perception (CP)
addresses these limitations by sharing information between
vehicles and/or infrastructure through Vehicle-to-Everything
(V2X) communications. This collaborative approach mitigates
occlusions and extends sensor coverage, proving essential for
Cooperative Driving Automation (CDA). However, there are
remaining challenges about its application in real-world scenar-
ios, such as CP information transmission and communication
degradations. In this cooperative context, Motion Prediction
(MP) proves to be crucial, since it provides a scene repre-
sentation of all the agents with their positions, velocities and
future trajectories. Thus, shared information between agents
can improve each agent understanding of the overall scene.

This paper introduces LFF-V2V, A Late Fusion Cooperative
Framework in V2V Scenarios. It combines two late fusion
methods, Non-Maximum Suppression (NMS) and Weighted Box
Fusion (WBF), with a map-less Hierarchical Vector Trans-
former (HiVT) motion prediction model. We have conducted
an extensive evaluation in two environments: CARLA simulator
and the real-world V2X-Real dataset, analyzing different com-
munication strategies. Our results demonstrate the effectiveness
of CP in improving object detection and motion prediction, even
in degraded environments.

I. INTRODUCTION

Over the years, perception systems have proven to be es-
sential for automated driving applications [1], [2]. However,
the single-vehicle perception paradigm, where each vehicle
relies solely on its onboard sensors, limits the scope and
reliability of these systems [3]. Challenges such as occlu-
sions, limited sensor range, and computational cost, disable a
complete and accurate understanding of the environment. To
address these challenges, Cooperative Perception (CP) stands
as one of the main solutions [4]. CP is crucial in Cooperative
Driving Automation (CDA), which aims to improve the
safety and flow of traffic by supporting the movement of
multiple vehicles in proximity to each other [5]. Through
shared information between vehicles and/or infrastructure,
CP enables multi-view perspectives to create a richer, more
comprehensive representation of the environment. This col-
laborative approach improves situational awareness, resolves
occlusion issues, and extends the effective range of percep-
tion systems during CDA [6]. Despite its potential, current

LAlberto Justo, Javier Araluce, Mario Rodriguez-Arozamena and
Leonardo Gonzdlez are with TECNALIA, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain alberto. justo,
javier.araluce, mario.rodriguez,
leonardo.gonzalez{@tecnalia.com}

2Mario Rodriguez-Arozamena is with Department of Automatic Control
and Systems Engineering, University of the Basque Country (UPV/EHU),
48013 Bilbao, Spain mrodriguezl83@ikasle.ehu.eus

3Alberto Justo and Luis Miguel Bergasa are with Department of
Electronics, University of Alcald, 28805 Alcald de Henares, Spain
alberto.justo, luism.bergasa{@uah.es}

CAV 1 DET AND PREDICTIONS
CAV 2 DET AND PREDICTIONS

FUSED DET AND PREDICTIONS

=3

Fig. 1: CARLA V2V scenario illustrating predicted trajectories based on
bounding box detections. Red and blue dashed boxes and lines correspond to
detections and predictions from CAV 1 and CAV 2, respectively. Detections
and trajectories derived from fused detections of both CAVs are shown as
green dashed boxes and lines.
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CP faces several challenges. One major issue is the syn-
chronization of data across multiple agents through Vehicle-
to-Everything (V2X) communications, which requires low
latencies to ensure a balanced trade-off between accuracy
and feasible bandwidths [7]. Moreover, data association
and fusion methods [8] are a major concern for CP, as
inconsistent or noisy input from different agents degrades
its overall performance.

Motion Prediction (MP), also known as motion forecast-
ing, of the behavior of surrounding agents is essential for
safe and efficient navigation. CP offers a powerful tool to
push the limits of what is achievable with single-vehicle MP
systems [9]. Thanks to V2X information exchange between
agents, their object detections are enhanced. Since detections
of the surrounding agents are improved, this leads to more
accurate agent trajectory forecasts [10]. This improvement
is particularly notable in places where occlusions can limit
the effectiveness of individual sensors, like intersections
or roundabouts. Thanks to these improved detections and
predictions, the motion planning systems of each Connected
Automated Vehicle (CAV) can make more informed and
safer decisions in CDA [11].

Figure 1 illustrates a CARLA roundabout case where CP
is applied, overcoming occlusions for CAV | and CAV 2.
In this context, CAV 2 is not able to detect nor predict the
vehicles that are entering the roundabout. However, thanks
to V2V information exchange with CAV 1, CAV 2 can
detect these vehicles and predict their trajectories. Enhanced
agents detections and forecasts entering the roundabout are
represented for clearer interpretation.

Our paper presents LFF-V2V, A Late Fusion Cooperative



Framework in V2V Scenarios. This framework gathers two
late fusion methods [12], [13] and HiVT-based motion pre-
diction model [14]. We evaluated LFF-V2V in CARLA [15]
and real-world dataset V2X-Real [16]. Our contributions are
as follows:

« Enhanced end-to-end cooperative perception framework
with map-less motion prediction model [17].

« Evaluation with two well stablished state-of-the-art late
fusion techniques: Non-Maximum Supression [12] and
Weighted Box Fusion [13].

« Extensive analysis of the framework in CARLA [15]
and the new real-world dataset V2X-Real [16], with
different communication strategies.

II. RELATED WORKS

A. Is Cooperative Perception feasible?

The feasibility of Cooperative Perception (CP) has been
a subject of extensive research, particularly in the context
of automated driving. The effectiveness of CP depends on
several factors, including: cooperative datasets, collaboration
modalities, resilience to system degradations and applica-
bility in real-world scenarios using standardized Vehicle-to-
Everything (V2X) communications [18].

To enable CP, various datasets have been developed
[19]-[23], capturing multi-agent interactions under differ-
ent conditions, with synchronized multi-view sensor data
for benchmarking object detection and motion prediction
models. However, practical CP remains not present in these
datasets, since they do not count on communications for
evaluation. CP can take various forms, ranging from early
sensor fusion [24], intermediate fusion [25], [26] and late
fusion [12], [13]. Because of communication feasibility, the
last two approaches are currently the most used. Yet, given
the actual ETSI standards [18] for V2X communications,
Collective Perception Messages (CPM) are suited for late
fusion, since they only contain post-processed bounding
box detections of each agent. Thus, in most of practical
CP implementations, late fusion is the method used [27].
Real-world CP implementations face degradation factors like
communication delays, localization inaccuracies, and sensor
noise [28]. Studies like [29] have evaluated package loss
and travel time in a real-world cooperative environment.
However, they do not analyze their degradation effect in CP.
Since we want to analyze time-loss degradation in CP, we
evaluate LFF-V2V in CARLA [15] and V2X-Real [16] in
different communication contexts.

B. Motion Prediction through Cooperative Perception

MP is a critical component of automated driving, allowing
vehicles to anticipate the future trajectories of surrounding
agents for safe and efficient navigation [2]. Traditional MP
approaches often rely on non-cooperative environments that
use high-definition maps [14], graph convolution methods
[30] or motion transformers [31]. Cooperative MP improves
the social context between agents, as they can be more aware

of the behavior of their surroundings. Recent cooperative so-
Iutions in MP, such as [32], extend the capabilities of single-
agent MP by integrating multi-agent observations without
pre-mapped information. Our previous work in [17] provides
an enhanced MP framework through V2V collaboration.
However, both studies do not count on possible degradations
that can affect cooperative MP, like object detection errors
or time-loss delays. Recent works like [7] highlight the im-
portance of robust data association and timestamp alignment
to mitigate these challenges. From our point of view, MP
needs to be adapted and evaluated to varying levels of CP
degradation without compromising performance.

II1. LFF-V2V FRAMEWORK

The proposed LFF-V2V framework introduces a modular
pipeline for CP in V2V scenarios. Our framework aims to en-
hance object detection and trajectory forecasting in different
collaborative driving environments. Figure 2 illustrates the
architecture of LFF-V2V, showing the integration of each
submodule and their interaction within the overall system.

A. Object Detection and Tracking

In our framework, both CAVs share the same object
detection and multi-object tracking core. This module of our
LFF-V2V framework is only included in CARLA. Detection
is built on LiDAR-based PointPillars model [33] for each
CAV. PointPillars model was trained on SHIFT dataset [34],
which provides synthetic LIDAR data suitable for automated
driving applications. The output of PointPillars is then fed
into the Simple Online and Realtime Tracking (SORT [35])
algorithm, which performs a tracking-by-detection approach.
SORT associates detections across consecutive frames using
a combination of well-established techniques, such as the
Kalman Filter and the Hungarian algorithm. This combina-
tion of detection and tracking provides the necessary input
data for the V2X module.

B. V2X Module

The V2X module enables the exchange of tracking data
between CAVs using standardized communication protocols
defined by [18]. This ensures interoperability and robust
message handling in V2V scenarios through Cooperative
Awareness Messages (CAM) and Collective Perception Mes-
sages (CPM). They are transmitted in formats compatible
with ROS [36], carrying information about detected objects,
including their positions, dimensions, orientations, and con-
fidence scores.

To emulate real-world conditions, the V2X module incor-
porates synthetic noise in form of communication delays
and packet loss rates, following [32]. Details about this
module will be explained in the next section of our paper.
It allows our framework to evaluate its robustness under
degraded conditions where perception messages are not time-
synchronized between agents.
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Fig. 2: LFF-V2V: A Late Fusion Cooperative Framework in V2V Scenarios

C. Late Fusion

LFF-V2V integrates two state-of-the-art late fusion tech-
niques to merge the detection outputs from multiple agents,
which will be evaluated under time-loss degradation later in
this paper.

1) Non-Maximum Suppression (NMS): In the NMS
method [12], the bounding boxes are considered to belong to
the same object if their Intersection-over-Union (IoU) area
is greater than a predefined threshold value Th. The IoU
measures the overlap between two bounding boxes in relation
to their combined area, as shown in Equation 1. Once IoU is
calculated for all pairs of bounding boxes, NMS discards any
overlapping boxes with an IoU smaller than T'h. This process
suppresses redundant detections and retains only the most
accurate bounding boxes. The selected boxes are represented
as in Equation 2.

B; N Bj
IoU(B;, Bj) = B.UB, (N
Baus = {BIL €eB | VB]‘,IOU(B,',B]‘) > Th} 2)

Here, B; and B; represent the considered bounding boxes,
B;NBj is the intersection area, and I3;UB; is the union area.
Th controls the trade-off between suppressing overlapping
boxes and retaining valid detections.

2) Weighted Box Fusion (WBF): WBF [13] sorts bound-
ing boxes by confidence and groups them into clusters based
on an IoU threshold. For each group, the confidence score
of the fused box S,.g is calculated as in Equation 3.
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N

Here, S; is the confidence score of each box within the
cluster, and NN is the total number of boxes in the cluster. The
coordinates of the fused box, in Equation 4, are calculated
as a weighted sum of the coordinates of the individual
boxes, where the weights are their confidence scores. Same

3)
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procedure applies to their width and height as shown in
Equation 5.
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Therefore, each fused bounding box by WBF can be
represented as in Equation 6.

BWBF = {Wan7HanaXan7 }/avgy Savg ‘ IOU(Bi7 Bj) Z Th}
(6)

D. Map-less Motion Prediction

For MP, LFF-V2V incorporates the map-less version of the
Hierarchical Vector Transformer (HiVT) model [14]. HiVT
model was trained on Argoverse 1 [37], without HD-map
information input as in our previous work [17]. This map-
less model is optimal for V2V MP as implemented in our
LFF-V2V framework. We train the model to learn the spatio-
temporal relationships between the scene agents. This ap-
proach eliminates the dependency on static map information,
making the system more scalable and adaptable to diverse
environments without requiring specific map configurations.

Mapless inputs for this model include features such as
agent positions (X,Y) and their IDs derived from detec-
tion and tracking outputs in CARLA, and ground-truth
detections in V2X-Real. HiVT incorporates a local encoder
that captures agent-agent interactions, ensuring a rotation-
invariant representation for each agent. A global module
then encodes long-range dependencies between agent-centric
local representations. Finally, a multimodal future decoder
predicts the trajectories of all agents in a single pass. The
output is eventually represented in the local coordinate frame
of the ego-vehicle.



For temporal information, we utilized 50 frames captured
at a frequency of 10 Hz. This setup aligns with the configu-
ration used in Argoverse 1, where 2 seconds of past data are
considered, and the prediction horizon spans 3 seconds. In
LFF-V2V, we count on the fused detections of both CAVs
to enhance MP. We aim to evaluate how fused detections
and communication degradation affect MP in our cooperative
framework.

IV. EXPERIMENTAL SETUPS

This section describes the used experimental setups to
evaluate the proposed LFF-V2V framework. We carry out
our experiments in simulated and real-world environments,
using CARLA and the V2X-Real dataset, respectively. Each
setup is designed to assess the framework’s performance
under varying conditions. Both setups share the same com-
munication module in our pipeline, with two different modes:
ROS and V2X. In the ROS-based setup, the experiments are
conducted asynchronously, ensuring that the entire pipeline,
including detection, tracking, fusion, and motion prediction,
operated at a stable frequency of 10 Hz across all submod-
ules. This consistent frequency allows for reliable processing
and evaluation of the fusion methods without introducing
delays or synchronization issues. The V2X communication
module simulates real-world transmission conditions by in-
troducing a delay of 100 ms in message generation and a
packet loss rate of 0.1 as in [32]. This means that 1 out of
10 CPMs are lost during transmission. The computational
backbone of our experiments is: NVIDIA L40 48 GB x 2
AMD EPYC 9124 16-Core Processors.

A. CARLA

We recorded a sample V2V dataset comprising Sk frames
with an average of 25 cars per frame. This data was sourced
from the Town03 environment of CARLA. In our sample
dataset, both CAVs are equipped with simulated 32-beams
LiDAR as input, since we want our framework to operate
smoothly in CARLA at 10 Hz without frame rate issues.
This is the input for our PointPillars detector. Later, we apply
the SORT algorithm to PointPillars’ detected objects. Our
CARLA experiments provide a simulation context for LFF-
V2V evaluation in object detection and MP.

B. V2X-Real-V2V

V2X-Real dataset [16] provides a large-scale, real-world
benchmark for cooperative perception. It was collected using
a combination of 2 CAVs and 2 smart infrastructure systems.
Our experimental setup uses the V2X-Real-V2V subset,
focusing exclusively on V2V collaboration. It includes 17k
LiDAR frames, 140k camera images, and 719k bounding
boxes. However, some of its samples are not fully complete,
with either subsamples of one of the CAVs missing or non-
complete LiDAR recordings of the scene. For this reason,
we only have been able to use 5k LiDAR frames of this
subset for both CAVs, with their respective bounding boxes.
For object detection and tracking, we take ground-truth
detections from the dataset, which include agent IDs for data

association. Our setup focuses on evaluating MP module
after late fusion, without additional noise or errors from
detection models. For this setup, we only use NMS as
the late fusion technique, since ground-truth detections do
not provide scores for using WBF. This V2X-Real-V2V
integration provides a context for the evaluation of LFF-V2V
MP under controlled conditions.

V. EVALUATION

This section shows the final results after conducting our
experiments. For detection, we evaluated two different late
fusion methods, NMS and WBF, in CARLA, with PointPil-
lars as the base detector. In V2X-Real-V2V, object detection
is not evaluated, since we take ground-truth detections di-
rectly from the dataset to assess MP afterwards. For MP,
we evaluated these same fusion methods in CARLA, and
only NMS for V2X-Real-V2V. Both assessments were done
within different communication modes: ROS and V2X. Our
evaluations show how perception performance is affected
indeed in degraded cooperative environments. They include
common metrics for object detection [1] and motion predic-
tion [37]: Average Precision (AP), Minimum Average Dis-
placement Error (minADE), Minimum Final Displacement
Error (minFDE), Brier Score for minADE (b-minADE) and
Brier Score for minFDE (b-minFDE). In this context, we
specify object detection and MP metrics only for ”Car” class.

A. CARLA

We evaluate LFF-V2V object detection performance using
two different thresholds of IoU: 0.5 and 0.7. To assess late
fusion in object detection, we take ground-truth bounding
boxes from CARLA agents, applying GTPC method as in
[38] for each CAV: boxes filter through ray-tracing, taking as
valid those which have more than 10 LiDAR points contained
in them. To make a more equitable comparison between
MP metrics, we decide to take the highest IoU threshold
(0.7) for the late fusion methods. Thus, overall detections are
more strict, hence MP errors are higher. In MP metrics, we
focus on the reliability of the brier score metrics (b-minADE
and b-minFDE). These metrics are considered more robust
for evaluating MP, since they incorporate both the accuracy
and confidence of the predicted trajectories. They offer a
more comprehensive assessment compared to minADE and
minFDE.

LFF-V2V results for object detection are shown in Table
I. Here, we can see that WBF performs better than NMS in
ROS-based communications, where there are no latencies.
However, when time-loss degradation introduces noise to
the system, like in V2X communications, WBF’s fusion
mechanism is negatively impacted as shown in the following
results. Despite V2X performance drop compared to ROS,
NMS still improves AP@0.7 in 2.37 % for CAV 1 and 2.73
% for CAV 2 respectively. On the other hand, WBF declines
2.7% for CAV 1 and 1.8% for CAV 2 in AP@(.7 under
V2X conditions. These drops illustrate the difficulty WBF
faces when handling incomplete or delayed data. Further-
more, because WBF combines overlapping boxes instead of



TABLE I: LFF-V2V Average Precision performance in CARLA. We show
the CAVs, communication context, late fusion methods and outcome met-
rics. The ”-” denotes that there is no communication nor fusion method
used. Total percentage of the base detector and after applying each method
is represented in brackets.

CAV  Comm Method | AP@0.51  AP@0.7 1
- - 73.7 (100.0)  70.4 (100.0)

ROS WBF | 79.4 (108.5) 74.9 (106.4)

1 NMS | 78.7 (106.7)  72.3 (102.7)
VX WBF 732 (99.3)  68.5 (97.3)

NMS | 76.1 (103.4) 72.1 (102.4)

- - 72.5 (100.0)  69.2 (100.0)

ROS WBE | 79.0 (108.9) 72.9 (105.4)

2 NMS | 77.1 (106.5) 71.3 (103.1)
VX WBF | 72.8 (100.5)  67.9 (98.2)

NMS | 74.1 (103.3) 71.8 (102.7)

TABLE 1I: LFF-V2V Motion Prediction performance in CARLA. We
show the CAVs, communication context, late fusion methods, and outcome
metrics. The - denotes that there is no communication nor fusion method
used. Total percentage of the base prediction and after applying each method
is represented in brackets.

minADE minFDE b-minADE b-minFDE
CAV  Comm  Method (m) | (m) | (m) | (m) |
- 1.08 (100.0)  1.61 (100.0)  1.70 (100.0)  2.23 (100.0)
ROS WBF 092 (114.8) 141 (112.4) 144 (1153) 2.03 (109.0)
1 NMS 0.79 (126.8) 1.27 (121.1) 1.41 (117.1) 1.88 (115.7)
Vax WBF 1.15 (93.5) 1.72 (93.2) 1.85 (91.2) 2.45 (90.2)
NMS 0.98 (109.3) 1.45 (110.0) 1.60 (105.8)  2.10 (105.8)
- 1.15 (100.0)  1.62 (100.0)  1.79 (100.0)  2.26 (100.0)
ROS WBF 1.00 (113.4) 1.34 (117.3)  1.43 (120.1)  1.96 (113.3)
2 NMS 0.78 (132.2) 1.24 (123.4) 1.39 (122.3) 1.85 (118.1)
Vax WBF 1.25 (91.3) 1.67 (96.7) 1.90 (93.7) 2.50 (89.4)
NMS 1.05 (108.7)  1.42 (112.3) 1.60 (110.6)  2.05 (109.3)

discarding them, like NMS, it fails to eliminate redundancy.
When introducing delays, WBF can compound errors and
put noise into the fused outputs.

The difference in how these methods handle redundancy
has significant implications for MP. WBF’s inability to
eliminate redundancy leads to higher trajectory prediction
errors than NMS, as shown in Table II. We can see here
that, even in ROS communications, NMS outperforms WBE,
obtaining 17.1 % and 15.7 % decrease for CAV 1 and
22.3 9% and 18.1 % decrease for CAV 2 in b-minADE and
b-minFDE, respectively. V2X degradation also affects MP
metrics, but as in object detection, NMS still improves the
overall system, whereas WBF struggles. We can see how
WBEF underperforms with a 8.8% and 9.8% increase for CAV
1 and 6.3% and 10.6% increase for CAV 2 in b-minADE and
b-minFDE. In comparison, NMS provides a 5.8% decrease
in CAV 1 and 10.6% and 9.3% decrease for CAV 2 for these
metrics in the same setup.

Figure 3 shows qualitatively these performance differences
between NMS and WBF in ROS communications. Here, we
can appreciate that CAV 1 vision helps CAV 2 to overcome
occlusions due to its surrounding vehicles, leading to better
forecasts.

B. V2X-Real-V2V

In V2X-Real-V2V, we apply the same considerations for
MP metrics mentioned in CARLA evaluation. LFF-V2V
results for MP are shown in Table III. From these results we
can conclude that NMS still improves MP, even in degraded

TABLE III: LFF-V2V Motion Prediction performance in V2X-Real-V2V.
We show the CAVs, communication context, late fusion methods, and
outcome metrics. The ”-” denotes that there is no communication nor fusion
method used. Total percentage of the base prediction and after applying
NMS is represented in brackets.

CAV  Comm minADE minFDE b-minADE b-minFDE
(m) | (m) | (m) | (m) |

- 0.33 (100.0)  0.44 (100.0)  1.38 (100.0)  1.20 (100.0)

1 ROS 0.21 (136.4) 0.27 (138.6) 1.17 (115.2) 0.98 (118.3)

V2X 0.28 (115.2) 0.37 (115.9) 1.45(105.8) 1.25 (114.2)

- 0.45 (100.0)  0.47 (100.0)  0.98 (100.0)  1.10 (100.0)

2 ROS 0.28 (137.8) 0.23 (151.1) 0.87 (111.2) 0.93 (115.5)

V2X 0.35 (122.2) 039 (117.0)  0.92 (106.1)  1.05 (104.5)

V2X conditions, with decreases of 5.8% and 4.2% for CAV 1
and 6.1% and 4.5% for CAV 2 in b-minADE and b-minFDE.
However, we can see quite a remarkable performance drop
compared to ROS conditions, where there are decreases of
15.2% and 18.3 % for CAV 1 and 11.2% and 15.5% for
CAV 2 in these metrics.

LFF-V2V qualitative results in ROS-based setup are
shown in Figure 4, which illustrates CAV 2 exiting an
intersection. It gets an enhanced prediction of the following
agents thanks to fused detections with CAV 1.

VI. CONCLUSIONS AND FUTURE WORKS

Our research presents LFF-V2V: A Late Fusion Coopera-
tive Framework in V2V Scenarios. For this purpose, we have
implemented two SOTA late fusion methods, Non Maximum
Suppresion [12] and Weighted Box Fusion [13], and evaluate
their performance under different communication modes:
ROS and V2X. This evaluation gathers V2V object detection
and motion prediction analysis in CARLA, and trajectory
forecasting in a real V2X dataset (V2X-Real [16]). For
object detection, we have trained PointPillars [33] model.
For motion prediction, we have used a SOTA single-vehicle
map-less model (HiVT) as in our previous work [17]. Our
results, based on SOTA metrics, prove that our CP framework
achieves a more precise scene context thanks to the vision
of other CAVs. The analysis also shows how late fusion
techniques are affected by time-loss degradation in object
detection and MP.

We intend to transition from simulated V2X environments
to real-world scenarios, incorporating actual V2X devices
to evaluate the framework under practical conditions. Fur-
thermore, we want to extend the analysis to include mid-
fusion techniques and infrastructure-to-vehicle (I2V) setups
that will provide a broader understanding of CP in diverse
applications.
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Fig. 3: CARLA qualitative results. We represent: the CAV1 point cloud, the CAV2 point cloud, the agents detected by CAV1 and CAV2, the past
observations and our multi-modal prediction. From left to right, we show no fusion, NMS and WBF.

(c) No-fusion in CAV2 (d) NMS fusion in CAV2

Fig. 4: V2X-Real-V2V qualitative results. We represent: the CAV1 point cloud, the CAV2 point cloud, the agents detected by CAV1 and CAV2, the past
observations and our multi-modal prediction. From left to right, we show no-fusion and NMS.
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