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Abstract— This paper presents a novel approach for collision
detection and overtaking maneuver. The proposed technique
is considered hybrid as it combines the smoothness of spline
curves for nominal trajectories and the capabilities of Model
Predictive Control (MPC) to respond to unexpected obstacles on
the lane. To detect collisions, a temporal spline parameterization
procedure is introduced. In the case of a possible collision, two
decoupled longitudinal and lateral MPC controllers adjust the
vehicle’s path without modifying the nominal trajectory, using
linear models to ensure short computation times. The complete
control system has been implemented on Robot Operating
System (ROS) using the hyper-realistic simulator CARLA, with
successful results in overtaking scenarios.

Lane change, hybrid planning, Model Predictive Control,
collision prediction, overtaking

I. INTRODUCTION

In urban driving scenarios, obstacles are encountered that
can partially or completely block the intended trajectory of
vehicles. Thus, autonomous vehicles must be able to generate
alternative trajectories avoiding such obstacles, or in the
worst-case, come to a complete stop. Moreover, it must be
ensured that the new path is both reliable and comfortable for
passengers, while also guaranteeing kinematic and dynamic
safety. These requirements pose a significant challenge, as
the vehicle’s target trajectory must be continuously updated
in real-time.

Decision and control processes for autonomous driving
have been traditionally divided into three levels [1]: (a)
strategic level for decision-making tasks, (b) tactical level for
trajectory generation, and (c) operational level for tracking of
the planned trajectory. Maneuvers as overtaking, lane chang-
ing and obstacle avoidance are associated with the tactical
and operational levels, which involve trajectory generation
and tracking.

Thus, there are two general approaches to the lane-change
problem: sampling-based methods [2] and Optimal Control
Problem (OCP) methods [3]. Both techniques tipically in-
volve discarding the nominal trajectory based on current ob-
stacles. While this use of OCP is valid, it may be inefficient
in challenging situations where the environment is constantly
changing, especially when using Model Predictive Control
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Fig. 1. Common scenario: The grey vehicle is the position where a collision
is assumed to occur if no action is taken. For lane changing, MPC+LQR
controllers are combined and generate lateral offset and speed adjustments
resulting in black trajectory for overtaking.

(MPC) techniques [4] with the currently available solvers
[5]. Furthermore, these solutions depend on the type of curve
used (Bézier, Spline, etc.) to generate the nominal path [6].

The need to constantly update the ego-vehicle trajectory
implies a high dependence on the processing speed of the
system. For this reason, when using optimization techniques,
the update frequency of the path may be limited. Thus, the
method used to solve the problem must guarantee two things:
(a) the existence of a reliable solution, and (b) short compu-
tation times. While the use of quadrating programming (QP)
dates back to the 1950s [7], the first algorithms developed
cannot be considered efficient. However, the results obtained
by [8] demonstrate that the OSQP (Operator Splitting for
Quadratic Programming) method can be applied to satisfy
both requirements.

An authors’ previous work developed a trajectory con-
troller for tracking routes defined by waypoints using spline
curves [9]. The study demonstrated the effectiveness of
spline curves to interpolate a smooth trajectory, from which
a velocity profile can be easily generated. Aditionally, a
lateral LQR controller was implemented to ensure trajectory
tracking. However, this study only addressed the tracking
of nominal trajectories and did not consider the presence of
other vehicles or obstacles that may obstruct the path.

The objective of this current study is to integrate an



online MPC controller (with OSQP optimization), which
can modify the trajectory with respect to the nominal path
(spline curve) when lane changes are necessary to execute
overtaking or obstacle avoidance maneuvers. The proposed
method directly acts on the control signals and therefore
requires an added system for collision prediction. For this
task, vision based methods have been presented [10], as
well as stochastic models [11]. In this work we will address
the problem of lane changing by applying predictive control
according to the temporal characterisation of the nominal
spline-based trajectory to predict collisions. An overtaking
criterion will be proposed based on these predictions. Figure
1 shows a common scenario in which vehicles 1 and 2
are possible obstacles for the nominal behavior of the ego-
vehicle. The collision prediction system detects a future
collision with vehicle 1 (grey vehicle) and an overtaking
maneuver is started. The black pointed line is the hybrid
trajectory (a combination of the spline nominal trajectory
and the MPC).

The main contributions of this work are as follows:

• We introduce a new hybrid structure in the control
architecture, coupled with a novel method for collision
prediction based on time-parametrized splines.

• The proposed method has been successfully validated
using the hyper-realistic AD simulator CARLA [12].

• Our experimental results demonstrate state-of-the-art
accuracy, ensuring collision-free trajectories while
avoiding the need for recalculating the nominal path.

II. ARCHITECTURE

Figure 2 shows the global control architecture of the
proposed system. It is said to be hybrid as, in the operational
level, it combines a classical LQR controller for tracking a
nominal spline-based trajectory (green blocks), and optimal
control techniques from the MPC family to lane change exe-
cution (red blocks). In the tactical level, a collision prediction
module and a decision making system (blue blocks) generate
the signals that activate the lane change behaviour through
the MPC modules when a future collision is detected on the
nominal trajectory.

The trajectory generator using spline curves and the clas-
sical LQR controller for tracking them have been extensively
documented in [9]. Spline curves provide a smooth and
parameterized trajectory which allows for easy generation
of velocity profiles (Vnominal) based on the radius of curva-
ture. Moreover, the LQR controller enables minimization of
tracking errors (angular error θe and lateral error de) in the
nominal trajectory by intuitively adjusting its parameters. Its
low execution time is also compatible with the high speeds
of autonomous road vehicles. However, this previous work
is constrained to tracking the nominal trajectory and does
not consider potential hindrances such as obstacles or other
vehicles.

In this study, the operational level of the control archi-
tecture is completed in order to perform lane changes when
required. For this purpose, two MPC controllers (one for

Fig. 2. Global architecture of the hybrid controller.

lateral and the other for longitudinal control) are introduced,
which modify the control signals in real-time without the
need to recalculate the nominal trajectory. The proposed hy-
brid structure ensures that these controllers are only activated
when a lane change is necessary, allowing for the benefits
of predictive control to be leveraged for this maneuver
(as detailed in section IV), while mitigating its primary
limitation, the high computation time.

To initiate a lane change, a lateral offset reference signal
doffset MPC equal to the lane width ±W (depending on
wheter the change is to the left or right lane) is set as
reference to the lateral MPC controller. This uses a linear
model and some constraints to generate the lateral offset dlat
which, added to the nominal later error de, will produce a
smooth lane change using the LQR controller. This approach
is referred to as a surrogate control architecture, as the
lateral MPC controller somewhat deceives the path control
to obtain the desired behavior. In case that the lane change
is not feasible to avoid collision with the preceding vehicle,
a reduction of its linear velocity will be made through the
longitudinal MPC module. To do this, its reference signal
VMPC is set to the preceding vehicle speed to achieve a
cruise control.

In the tactical level, the collision prediction module uses
the positions and velocities of the ego vehicle and other
participants to predict collision times within a limited time
horizon. These collision times are used by the decision
making module to generate the references and constraints for
the MPC controllers. The decision making module is part
of a wider local planning system based on reinforcement
learning [13] which is outside the scope of this paper. A
simpler version of the module based on decision trees is
proposed in section III.c to validate the control architecture
in two-lane scenarios.

In the following sections, a comprehensive account of both
the collision prediction approach and the MCP controllers
will be provided.



III. COLLISION PREDICTION METHOD

Collision detection between dynamic objects requires ef-
ficient perception techniques as well as accurate models to
predict future trajectories [14]. However, the movement of
vehicles on roads occurs in lanes parallel to the nominal
path. We propose a method that uses this nominal trajectory
to obtain collision times with other vehicles in a fast and
simple way.

A. Temporal parametrization of nominal trajectory

In [9] we develop the spline-based nominal trajectory gen-
erator. This curve allows n waypoints to be interpolated using
(n− 1) third-order polynomial segments. Each segment i is
characterised by two polynomials (one for each coordinate
Xi and Yi) as a function of a parameter u along the segment,
normalized between 0 and 1:

Xi(u) = aix + bix · u+ cix · u2 + dix · u3

Yi(u) = aiy + biy · u+ ciy · u2 + diy · u3 (1)

For overtaking maneuvers, it is necessary to predict col-
lisions of ego vehicle with the preceding vehicle in the
same lane (numbered 1) and the vehicle in the left-hand
lane (numbered 2), that can travel in the same or opposite
direction. Assuming the velocities of the vehicles are known,
it is possible to perform a temporal parameterisation of the
nominal spline for each vehicle, using the following variable
change:

u =
t− ti

ti+1 − ti
=

t− ti
∆i

(2)

where ti is the time allocated to waypoint i according
to the current vehicle speed. In this way, a continuous
parameterisation of the curve as a function of time t is
obtained, where each trajectory segment is defined by the
following polynomials:

Xi(t) = Aix +Bix · t+ Cix · t2 +Dix · t3
Yi(t) = Aiy +Biy · t+ Ciy · t2 +Diy · t3

(3)
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(4)

and the same expresions for Yi(t) coeficients. Once the
trajectories have been obtained as a function of time, the
prediction of their evolutions can be made in order to
determine possible spatio-temporal cut-off intervals between
the vehicles involved in the scene.

Fig. 3. Example scenario for predicting collision times: participant 1 is
driving in front of the vehicle at a lower speed; in the left lane, participant
2 is driving in the opposite direction. All positions are projected onto the
nominal trajectory, which is time-parametrised for each vehicle according to
its speed (see figure 4). This makes it possible to predict the future positions
of the vehicles on a time horizon (4 seconds) and to detect the collision
times with the participants (circled positions).

Fig. 4. Time parameterisation of the nominal trajectory for the three
vehicles in the scenario in figure 3, as a function of their current speeds.
The vertical axis corresponds to the time axis. The intersections between the
trajectories occur in space-time, and allow the detection of collision times
and positions (red circles in figure 3).

B. Collision time detection

The classical approach to collision detection using pa-
rameterised curves considers the trajectories of all agents
in the scene to be known [15]. In domains where all agents
are controlled, taking the references of all other objects for
granted may be valid. However, autonomous driving aims to
address an open and fully dynamic work frame. Therefore,
considering a competent perception module, or assuming
V2V communication, at best the position, orientation and
velocity of objects surrounding the main vehicle will be
known.

In this work we have approached the problem in a different
way, projecting all the opposing vehicles onto the nominal
trajectory, regardless of the lane in which they are travelling.



Once their positions have been projected onto the nominal
spline, each vehicle performs its own temporal parameteri-
sation of this spline according to its current speed. To do
this, we calculate the times associated with each waypoint
ti, according to the lengths of the spline segments and the
speed of each vehicle.

Figure 3 shows an example where vehicle 1 is driving
ahead of the ego vehicle at a lower speed, while vehicle
2 is travelling in the left lane and opposite direction. After
projecting the positions of each vehicle onto the nominal
trajectory, each vehicle generates its own temporal spline
(Figure 4, where the vertical axis is time), with a finite future
time horizon T (4 seconds in the example). The intersections
between the trajectories correspond to the prediction of
collisions in space-time domain. The intersection between
the ego vehicle trajectory and vehicle 1 predicts the collision
time when travelling in the right lane, and between the ego
vehicle and vehicle 2, the collision time travelling in the left
lane. In the last case, there is a small temporal error due
to the projection that will be compensated by the decision
making system.

C. Decision making for lane change maneuvers

A complete decision making system for complex driving
scenarios using reinforcement learning has been published by
authors in [13]. In this paper we propose a simpler method
that uses a decision tree (figure 5) to deal with two-lane
scenarios.

The root of the decision tree is evaluated once the previous
manuever has been fully completed. Using as inputs the col-
lision times with the preceding vehicle and the vehicle in the
opposite lane (within a time horizon T ), the system provides
as outputs the references for the lateral and longitudinal MPC
controllers (doffset MPC ,VMPC). For the lateral controller,
doffset MPC can take values of the tuple {+W ,−W ,0} to
produce a change to the right lane, to the left lane, or to keep
the current lane, being W the lane width. In the case of the
longitudinal controller, VMPC can take values from {V0,V1},
being V0 the nominal speed of the ego vehicle and V1 the
speed of the preceding vehicle in the current lane. As shown
in figure 5, the combination of these two reference signals
will produce one of the following behaviours: (1) change
to the left lane, (2) return to the right lane, (3) keep the
nominal speed in the current lane, or (4) reduce the speed
in the current lane to accommodate the preceding vehicle.
The smoothness of these manoeuvres, as well as compliance
with certain constraints on their control signals, is ensured
by the MPC controllers.

IV. MPC CONTROLLERS

In the field of autonomous driving, the conventional ap-
proach to decision and control using MPC has relied on the
kinematic bicycle model and dynamic model of the vehicle
[16]. However, these nonlinear models require significant
computation time for real-time execution at high velocities.
Our hybrid method, which employs a nominal smooth tra-
jectory with a velocity profiler for curves, does not require

Fig. 5. Decision tree for two-lane scenarios. Outputs correspond to MPC
controllers references: (doffset MPC ,VMPC ).

an exact vehicle model and can achieve better computation
performance by using linear models. Additionally, since the
MPC controllers are only used in lane change maneuvers,
precision in the model is not a critical factor, since the LQR
control operates continuously.

A. Motion integral models

The linear model used is a decoupled integrator chain for
longitudinal and lateral dynamics.

For longitudinal dynamics a triple integrator chain based
on jerk is used:

dlon =

∫∫∫
jlon(t)dt

3 (5)

where dlon is the longitudinal distance and jlon the longi-
tudinal jerk. Using dlon, the longitudinal speed vlon and the
longitudinal acceleration alon as state variables, the discrete
linear state-space representation with sample time Ts of this
longitudinal model is:

ḋlonv̇lon
ȧlon


k+1

=

1 Ts
T 2
s

2
0 1 Ts

0 0 1

dlonvlon
alon


k

+

T 3
s

6
T 2
s

2
Ts

 jlonk
(6)

The lateral model is a double integrator chain described
by:

dlat =

∫∫
alat(t)dt

2 (7)

being dlat the lateral offset (distance) to the nominal spline
trajectory and alat the lateral acceleration. Using as states
dlat and the lateral speed vlat, the following state-space
representation is obtained:[

ḋlat
v̇lat

]
k+1

=

[
1 Ts

0 1

] [
dlat
vlat

]
k

+

[
T 2
s

2
Ts

]
alatk (8)

The lateral output of the MPC is a smooth lateral offset
that is adapted to the presence of obstacles on the road.



Fig. 6. Simulation scenario in CARLA. Dashed lines depict MPC constraints. The secondary vehicle is stationary and ego vehicle’s movement is
represented by multiple frames.

B. Constraints

All the states and control variables are bounded con-
strainst. In the longitudinal model, the jerk has been included
to add a component of comfort, being its value limited
to jmax. The acceleration is bounded between maximum
deceleration amin and maximum acceleration amax, and the
speed is bounded between 0 and the maximum speed given
by the velocity profiler of the spline trajectory vlonmax . The
longitudinal distance is also bounded to avoid a collision
with the front vehicle located at a distance Dfront. These
are the constraints for the longitudinal model:

0 ≤ dlon ≤ Dfront

0 ≤ vlon ≤ vlonmax

amin ≤ alon ≤ amax

−|jmax| ≤ jlon ≤ |jmax|

(9)

In order to achieve a smooth lane change without en-
croaching into adjacent lanes, constraints play a crucial role
in lateral control. Being W the lane width, Vw the vehicle
width, and vlatmax and alatmax the maximum lateral velocity
and acceleration, the lateral constrainst are:

− 1
2W + 1

2Vw ≤ dlat ≤ 3
2W − 1

2Vw

−|vlatmax
| ≤ vlat ≤ |vlatmax

|
−|alatmax

| ≤ alat ≤ |alatmax
|

(10)

V. RESULTS

Our experiments run on a PC equipped with an Intel®
Core™ i7-9700 CPU at 3.00 GHz and 32 GB of RAM. The
proposed control architecture is implemented using C++ in
the ROS Noetic framework. Besides, the MPC problem has
been adapted to a QP type problem so that using the OSQP
solver [8] we obtain the optimal solutions as well as the
solvability. First of all, we analyse the use of MPC compared
to the direct lateral offset introduction to the LQR trajectory
controller on our own scenario. Then, a typical scenario
proposed in [17] is used to compare our approach against
three representative state-of-the-art methods: Minimun Snap
Method (MSM) [18], Picewise Jerk Method (PJM) [19] and
Polinomyal QP-based method [17].

A. Ablation study

We have designed an overtaking scenario in CARLA to
analyze the behavior of our system in an ablation study.
The scenario involves a motionless vehicle positioned in the

middle of the ego vehicle’s lane. At a safe distance, the
collision detection system triggers the overtaking maneuver,
as illustrated in Figure 6. Thanks to the incorporation of
both constraints and the suggested integrators, our system
achieves a successful response.

In Figure 7, a comparison is presented between our
whole proposed method and an alternative approach with
the lateral MPC (our main contribution) disabled. In the
alternative case, the decision-making module’s signal is
directly introduced as an offset to the trajectory follower’s
input. As observed, the LQR exhibits inadequate handling
of a step signal at the error input, resulting in oscillations
in the response. Although the overtaking maneuver in this
particular case is of short duration, it should be noted that
the alternative method would not be viable for prolonged
lane changes, where extended travel in a lane different from
the nominal one becomes necessary.

Fig. 7. Lane change maneuver example: The MPC-based overtaking is
illustrated in blue, while the results of directly introducing the offset signal
to the LQR controller are depicted in red.

The observed oscillations in the alternative method’s re-
sponse can be partially attributed to the controller’s hyperpa-
rameter values. While the calibration of the LQR primarily
focuses on enhancing tracking accuracy, it may not ade-
quately address overtaking maneuvers. In contrast, model-
based control also utilizes hyperparameters, but due to the
linear and relatively simple nature of the state variable sys-
tems, once calibrated, they are well-matched to the trajectory
controller’s response, ensuring smoothness and reliability.

B. Comparison with other state-of-the-art methods

To evaluate our approach in comparison to the current
state of the art, we analyze a common scenario proposed by
[17] where traffic lanes are partially occupied by obstacles.



The prevailing methods primarily rely on optimization-based
planning, mainly focusing on path generation. In Figure 8,
we showcase the nominal trajectories generated by the state-
of-the-art methods with the same well-tuned cost function
parameters, juxtaposed with the results of the avoidance
maneuver implemented in our method.

As indicated in [17], while the MSM method ensures snap
continuity, its reliability is heavily dependent on cost function
parameters. This reliance on parameter values makes the
approach less reliable in complex scenarios. On the other
hand, the PJM method does not guarantee jerk continuity,
resulting in increased vibration and reduced smoothness in
the final trajectory. Regarding our approach to the matter,
when considering comfort along the nominal trajectory, the
utilization of splines and the velocity profiler effectively
highlights their functionality. However, with regards to lateral
deviation, as explained in the preceding section, smoothness
during maneuvers is achieved by filtering the doffset MPC

signal through the integrator chain and appropriately config-
uring the operational limits of the state variables.
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Fig. 8. Comparison between our method, MSM, PJM, and Two-Phase
QP-based: The figure illustrates the optimized paths and velocity.

In contrast to state-of-the-art methods that assume strict
adherence of the vehicle to generated trajectories without
considering posible errors in the path tracking controller,
our proposal takes a different approach. This key distinction
ensures that the trajectories are always collision-free, unlike
the method proposed by Yuncheng Jiang et al. [17] that may
require multiple iterations to achieve this goal.

VI. CONCLUSION

We present a novel hybrid approach for collision de-
tection and overtaking maneuvers in autonomous vehicles.
The proposed technique combines the smoothness of spline
curves for nominal trajectories and the capabilities of MPC to
respond to unexpected obstacles on the lane. Our experiments
demonstrated successful results using the CARLA simulator,
implementing the control system in ROS. By introducing
decoupled longitudinal and lateral MPC controllers, we
achieved effective collision avoidance while maintaining
short computation times. Compared to state-of-the-art meth-
ods, our approach demonstrated improved performance and
reliability in complex scenarios. The utilization of splines

and the velocity profiler highlighted the functionality and
comfort along the nominal trajectory, while addressing lateral
deviation through the integration of the MPC signal and
appropriate operational limits. Our system consistently gen-
erated collision-free trajectories, setting it apart from existing
approaches.
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