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Abstract— This paper presents an approach for the automatic
pixelwise labeling of road scenes using a Probabilistic Graphical
Model (PGM). The learning stage is based upon Conditional
Random Fields (CRFs) and the inference of the semantic
classes is relies on Tree-Reweighted Belief Propagation (TRW).
The employment of miniaturized images based on superpixels
is proposed and validated to achieve real time classification,
which is of interest for the integration of scene understanding
capabilities into ADAS and autonomous vehicles. The evaluation
is carried out using the KITTI ROAD dataset achieving top
results in roads with multiple marked lanes and it is publicly
ranked among the state of the art.

I. INTRODUCTION

During the last years, a big research effort has been made
to design Advanced Driver Assistance Systems (ADAS) that
rely on cameras as sensing technology, taking advantage
of its low cost and ease of integration. For instance, lane
departure warning has been recently extended to onboard
smartphones [1]. In fact, lane estimation and road detection
for assisting drivers are under active research [2], [3], [4]

In addition, providing scene understanding capabilities
and extracting useful semantic information from images is
of great interest for autonomous vehicles. This requires
the employment of computer vision and machine learning
advanced techniques, which allow to learn descriptive models
and to infer semantic entities (e.g. scene regions, layout
and objects) from a bunch of pixels. Recent advances in
discrete optimization and Probabilistic Graphical Models
(PGMs) have made Conditional Random Fields (CRFs) [5]
a standard tool for segmenting and labeling tasks. Thus,
there are a myriad of works based on CRF to perform
image understanding in road enviroments, either to detect and
classify single semantic entities, like lanes [6] or curbs [7],
or to predict several semantic labels contained in the scene
[8], [9]. However, such approaches require relevant hardware
resources to be able to work in real time.

With the aim of providing a faster prediction of the
semantic categories in the scene, we reimplement the infer-
ence stage and employ miniaturized images, i.e., at reduced
resolution. Indeed, this reduction has been proved to be
effective in loop closure detection of SLAM systems [10].
The idea behind our proposal is to shorten the space of
hypotheses using superpixels, that is, representative pixels
of patches in the image.
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II. MODEL LEARNING AND INFERENCE

To perform image understanding, this work employs
CRFs, which is a graphical model that represents the condi-
tional probability p(y|x) of some vector y given an obser-
vation x. We propose a grid-shaped model (see Fig. 1) to
define the labels of the superpixels and their relationships.
This graph is not tree-structured, thus, we propose to rely
on a recent work [11], which presents a parameter learning
based upon approximate marginal inference instead the usual
approach based on approximations of the likelihood.

More especifically, the nodes of this undirected graph
correspond to a lattice of pixels in a 4-neighborhood. At each
node i we introduce an output random variable yi, taking
a value from a set of labels L corresponding to semantic
classes of interest, and the observable random variable xi
representing the value of local features.

Fig. 1. Graph of a CRF aligned with the image’s lattice of pixels.

Formally, the probability distribution can be factored in
a product of unary (ψi) and pairwise (ψij) potentials, also
conditioned on the model parameters w:

p(y|x;w) =
1

Z(x;w)

∏
i

ψi(yi,x;wi)
∏
i,j

ψi,j(yi, yj ,x;wij)

(1)
The first product is over all individual pixels i, while the

second one is over the edges in the graph which model
neighboring pixels interactions. Z(x;w) is known as the
partition function for normalization purposes.

The optimal vector of parameters w∗ is obtained by a
supervised learning process that minimizes a loss function, in
our case the marginal-based loss [11]. Once these parameters
are computed from the training data, the model is applied
for inferring pixelwise labels on test images. Particularly,
this stage is based on Tree-Reweighted Belief Propagation
(TRW) [12], truncated to a fixed and small number of
iterations [11].

III. APPEARANCE FEATURES

For the visual description of the scenes, multiple features
are incorporated into CRF model introduced above. The
potentials in (1) can be defined as log-linear combinations
of features extracted from the observed images x:
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{
ψi = exp(wi

T · fi(x)) (2a)
ψi,j = exp(wij

T · gij(x)) (2b)

where fi is a vector-valued function that defines the
features of node i and similarly, gij is another vector that
maps to pairwise features of nodes in the edge (i, j).

Node features. For each pixel in the lattice, several
features are concatenated into fi. Firstly, we propose to
incorporate color information of the scene employing HSV
space due to its higher immunity to illumination changes.
Then, we construct a set of feature functions from the
intensities of each pixel i in the different channels.

In addition, an object position in an image is not arbitrary
but maintain a certain order, for example, in the majority of
driver assistance systems, the road occupies the center and
bottom parts of the image. To exploit this, we define two
features fu and fv taking the normalized position along the
horizontal and vertical axes, respectively.

Moreover, since roads usually have a well-defined texture,
we have opted for the inclusion of Local Binary Patterns
(LBP) [13] in the extraction of road features. Besides,
the local appearance around each node is captured with a
Histogram of Oriented Gradients (HOG) [14] over a grid of
non-overlapping 8× 8 cells, with 9 orientation bins per cell,
concatenating 4 cells to one block descriptor.

Edge features. The edge features consist of a concate-
nation of several descriptors. Firstly, the L2-norm of the
difference of HSV intensities for the pixels i and j belonging
to the same edge is computed. Then, a new set of ten edge
features are obtained by discretizing the intensity values
with a set of ten arbitrary thresholds [11]. Thus, the model
complexity is augmented, the variance tends to increase and
the squared bias tends to decrease in a bias-variance tradeoff.

In addition, we have empirically observed that incorporat-
ing a ’bias’ feature set to one in the connected nodes, reduces
the classification error. This extension captures any effects on
the states of the random variables that are independent on the
other features. Finally, the resultant 11D vector is doubled in
size and arranged differently depending on whether the edges
are vertical or horizontal. In the first case, the 11 features are
kept on the first half, while the second half is filled with zeros
and vice versa for horizontal links.

IV. EXPERIMENTS AND CONCLUSION

The effectiveness of our road inference approach is val-
idated using the KITTI-ROAD dataset [3]. Particularly, we
publicly rank our method (ARSL-AMI) by evaluating the
performance over the test images at 15% of the original
size. At this small resolution, inference is computationally
efficient requiring less than 50 ms per image without a big
loss in accuracy, as it is shown in Table I. Comparing our
results with the reported accuracies for the other state-of-
the-art works, we obtain similar values at much lower time
costs, but we also rank second in multiple marked lanes
(UMM_ROAD) evaluation. We note that our method does
not require stereo vision nor 3D points. These results validate

TABLE I
STATE OF THE ART COMPARISON IN KITTI URBAN ROAD [3]

Method Setting MaxF Time Environment
ProBoost stereo 87.21% 2.5min >8cores @3.0Ghz C/C++

SPRAY mono 86.33% 45ms NvidiaGTX580 Python+OpenCL

RES3D-Velo laser 85.49% 0.36s 1core @2.5Ghz C/C++

ARSL-AMI mono 80.12% 0.05s 4cores @2.5Ghz C/C++

our superpixels hypothesis as the optimal way for segmenting
complex images with a fair time processing without using
specific hardware.

Conclusion. We have shown that CRFs are one of the best
alternatives in order to effectively address image labeling
tasks as road detection. However, computational costs make
them difficult candidates for integration into ADAS. Our
work, upon reimplementation of the inference part, added to
the employment of miniaturized images and easy-to-compute
features facilitate complete real time integration.
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