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Abstract

Large pre-trained video transformers are becoming the standard architec-

ture for video processing due to their exceptional accuracy. However, their

quadratic computational complexity has been a major obstacle to their prac-

tical application in problems that require the recognition of precise motion

patterns in video, such as in the recognition of Activities of Daily Living

(ADL). Techniques like token pruning help mitigate their computational cost,

but overlook some specific aspects of this task such as the actor movement.

To address this we propose an improved token selection method that in-

tegrates semantic information from the ADL recognition task with that of

human motion. Our model relies on a multi-task architecture that infers

human pose and activity classification from RGB images. We show that

guiding token pruning with motion information significantly improves the

trade-off between higher efficiency, obtained by reducing the number of to-

kens, and accuracy of the classification task. We evaluate our model on three

popular ADL recognition benchmarks with their respective cross-subject and
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cross-view setups. In our experiments, a video transformer modified with our

proposed modules sets a new state-of-the-art on the ADL recognition task

whilst achieving significant reductions in computational cost.

Keywords: activities of daily living recognition, efficiency in transformers,

token selection, motion heatmaps

1. Introduction1

Activities of Daily Living (ADL) encompass the fundamental tasks of2

daily life, such as eating, cooking, and managing medications. They play a3

crucial role in assessing a person’s ability to function independently. Their4

recognition is used to monitor the elderly or people with disabilities and5

to evaluate their functional ability in conditions such as dementia, stroke,6

or aging. The models and techniques of computer vision used to recognize7

them share similarities with the broader field of human action recognition.8

However, ADLs present specific challenges, such as the existence of short and9

subtle actions that exhibit a similar visual appearance but differ in motion [1].10

This requires the precise analysis of human body motion patterns within11

videos’ spatio-temporal context.12

In the recognition of human actions we have seen a transition from meth-13

ods using CNNs [2, 3, 4] and 3D-CNNs [5, 6, 7] or a mixture of both [4] to14

transformers [8, 9, 10]. Using self-supervised learning techniques and the use15

of large-scale datasets, recent video transformer models achieve the highest16

accuracy on the human action recognition problem [11]. A key limitation in17

using these models to analyze video is their quadratic complexity, which in-18

creases the computational demands as the number of spatio-temporal tokens19
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grows. Although progress has been made in this area, there is still consid-20

erable room for improvement, especially for recognizing subtle motions and21

when the trade-off between accuracy and efficiency is of practical relevance.22

Both are crucial ingredients in making the recognition of ADL a household23

product. Applications such as falling detection or ensuring that medication24

is taken correctly demand real-time performance, making computationally25

expensive models impractical.26

One technique to achieve a better trade-off between accuracy and ef-27

ficiency is token selection, where a percentage of tokens are discarded at28

certain blocks within the transformer model, reducing the total number of29

tokens in the model. Popular techniques include Top-K [12], where token30

selection is guided by keeping the K tokens with the greatest attention to31

the class token, merging similar tokens [13], or a mixture of both [14, 15, 16].32

However, these techniques often lack consideration for factors such as human33

pose and its temporal dynamics. This can lead to suboptimal performance34

in ADL scenarios that require a nuanced understanding of human actions,35

resulting in a potential loss of critical information.36

In this paper, we present a token selection method for transformer models37

that integrates semantic information from both the activity recognition task38

and human motion. We aim to improve the attention of the transformer on39

the actor’s motion and, at the same time, reduce computational requirements40

of the model. Our module can be integrated on ViT-based architectures such41

as InternVideo2 [18] and VideoMAEv2 [11]. These transformer architectures42

are pre-trained with a self-supervised strategy and refined with a large human43

action database. Our method, called PO-GUISE, is trained in a multi-task44
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(a) Baseline ViT model (b) PO-GUISE (ρ = 0.1, λ = 0.1)

Figure 1: Attention maps for the ”Drink.Frombottle” action on Toyota-Smarthome

(CS) [17]. Colored rectangles represent the attention weight assigned by each visual token

to the classification token, lighter yellow rectangles indicating a low attention from that

token. PO-GUISE concentrates attention on task-relevant regions, improving computa-

tional efficiency by discarding irrelevant tokens.
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fashion using RGB videos. They are converted into spatiotemporal visual45

tokens and are processed alongside heatmap tokens representing temporal46

representations of human poses. We have extended the traditional heatmap47

to predict the motion of the keypoints of multiple actors in video. Our token48

selection method prunes spatiotemporal visual tokens, referred to as visual49

tokens, that do not pay enough attention to semantic tokens, those relevant50

to human motion and action recognition. To ensure that information is51

not lost during pruning, our merging method summarizes the pruned tokens52

by averaging similar dropped tokens. Fig. 1 shows that our method selects53

tokens primarily on the actor, while the baseline model focuses on potentially54

irrelevant parts of the scene. To our knowledge, we are the first to improve55

the accuracy of transformer models for ADL recognition while reducing its56

computational cost using human pose and motion information. Moreover,57

our approach does not require an external keypoint detection model. In58

summary, we pioneer the introduction of human motion information into the59

token selection process in the video transformer architecture.60

The contributions of our work are as follows.61

• A token selection method guided by human motion and class informa-62

tion tailored to the recognition of activities of daily living. Focuses the63

attention of the model on the motion of the actor and improves the64

trade-off between efficiency and accuracy compared to other methods65

from the state-of-the-art, even at very low token keep rates.66

• A representation of human motion based on a feature map shared by67

all body keypoint temporal heatmaps, that is agnostic of the number68

of people in the scene and allows our method to be used on multi-actor69
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datasets.70

• Our method sets a new state-of-the-art in various activities of daily71

living RGB video benchmarks, while being much more efficient than72

other top performing methods based on video transformers.73

2. Related work74

In this section, we review the human action recognition and activities75

of daily living literature. Recognizing actions in videos requires considering76

variations in the location and poses of actors within the scene, as well as77

their movement.78

Human Action Recognition and ADL. One way to analyze motion in79

videos is to compute convolutions in both the image and the time dimensions80

with 3D CNNs [5]. A popular approach is the two-stream CNN [2, 3, 4] that81

uses both RGB and optical flow maps. However, optical flow only gives82

short temporal scale information. More recent work use a Recurrent Neural83

Network (RNN) [19] on top of a two-stream network [3] to process a longer84

but still limited temporal context. The adoption of video transformers in85

action recognition allows for a holistic temporal context to be established [8,86

9, 10], although with quadratic complexity in the number of visual tokens.87

The human pose and its realization in the form of probability maps, or88

heatmaps, corresponding to the location of body keypoints has proven to be89

very discriminative in action recognition [20, 21, 22, 23, 24, 25, 26, 27]. Many90

previous studies have used an external human pose estimation model [22,91

21, 23, 28, 29, 30, 31]. This is also the case with recent transformer based92

methods [25, 26, 27]. Having an external pose estimation model not only93
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increases the computational cost but also decreases the system robustness in94

situations where the external model fails. Few methods adopt a multi-task95

strategy to estimate pose and recognize actions in the same model [19, 32]. A96

recent approach achieves top performance in the recognition of activities of97

daily living by combining 2D and 3D human pose [10]. In our solution we also98

adopt a multi-task strategy. However, unlike these approaches, we use human99

pose to select the most informative video tokens by guiding the model’s100

attention to human motion, while reducing the computational requirements101

of the model.102

Computational requirements of Video Transformers. The quadratic103

complexity in the number of tokens in a transformer is a fundamental limi-104

tation for its use in real-time video analysis. This problem can be addressed105

in different ways. Some methods modify the attention mechanism itself to106

reduce this quadratic complexity. For example, one approach is to factor-107

ize attention along the spatial and temporal dimensions [33]. Another is to108

restrict attention to small local windows and shift these windows hierarchi-109

cally [34].110

Another approach is token selection, in which a dedicated mechanism111

prunes or merges the visual tokens processed by the network, discarding112

those considered irrelevant to the task. This is achieved while preserving the113

integrity of the transformer’s weights and underlying architecture.114

Token selection methods can be categorized into pruning or merging115

strategies. Token pruning methods focus on identifying and removing less116

informative tokens. EViT [14], which uses a Top-K approach, selects the K117

tokens with the highest attention to the class token, where the non-selected118
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tokens are fused into one token. PPT [35], introduces a learnable token per119

body keypoint and uses their attention values to prune visual tokens. The120

main limitation of PPT is the fixed number of keypoint tokens used in train-121

ing, which limits the number of actors in the scene. EVAD [9], leverages122

attention to visual tokens on a key-frame to determine which tokens to re-123

tain. The TPS (Token Pruning and Squeezing) module [15], is a module for124

image transformers. It uses a Top-K token pruning step and a squeeze step125

that merges the non-selected tokens into the selected ones via matching and126

similarity-based fusing. Another form of guiding pruning from image infor-127

mation is based on patches, where inter-patch attention and dynamic pruning128

are applied to take advantage of the rich structure of the patch relations [36].129

Token merging techniques combine similar tokens to reduce redundancy,130

such as ToMe [13], which merges similar tokens, as dictated by their cosine131

similarity, into new ones. DTMFormer [37], which adaptively clusters tokens132

into fewer semantic tokens via an attention-guided mechanism. Another133

technique is a partitioned token fusion and pruning strategy. It discards134

low-correlation background token information and fuses medium-correlation135

token. This technique has been applied to the field of object tracking [16].136

Haurum et al. [12] provides a systematic comparison of ten popular token137

reduction methods, finding that pruning-based methods such as Top-K and138

EViT [14] consistently perform best.139

However, a significant limitation of existing token selection methods is140

their lack of task-specific considerations. Specifically for the ADL task, these141

methods do not account for the human pose and its temporal dynamics142

directly, potentially resulting in the loss of crucial information.143
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Our proposal. We present a novel token selection method guided by144

both temporal human pose heatmaps and ADL. We use a multi-task strat-145

egy, estimating both human motion heatmaps and activity, which differs146

from the usual and less efficient approach using externally provided land-147

marks [25, 26, 27]. Also, and differently to π-Vit [10], our approach uses148

the estimated motion to reduce the number of spatio-temporal tokens. This149

strategy focuses the attention of the model on the actor’s movements and150

reduces the computational complexity of the transformer. As a result, it151

maintains or even enhances the accuracy of the baseline model. In addition,152

its accuracy decreases much more slowly than that of other token selection153

methods at very low computational budgets. Compared with the baseline154

model, PO-GUISE in default settings reduces computation by a remarkable155

30% and improves the accuracy by 0.55%, 1.74% and 3.84% in the NTU60,156

NTU120 and Toyota-Smarthome datasets, respectively, in the cross-subject157

protocol (see Tables 5 and 4).158

3. POse-GUIded multi-task video transformer with token SElec-159

tion (PO-GUISE)160

Our approach incorporates a pre-trained video transformer [11, 18] as its161

encoding mechanism. The video transformer is fine-tuned in different ac-162

tion recognition datasets. To facilitate human body keypoints localization163

and guide our token selection, we have integrated the pose heatmaps predic-164

tion and action classification tasks. Additionally, to mitigate the computa-165

tional demands associated with video transformer models, we introduce the166

PO-GUISE module, which effectively reduces the number of visual tokens.167
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Figure 2: Our architecture consists of 4 stages. An input clip is tokenized and processed by

a ViT encoder alongside learnable class and heatmap tokens. Our token selection module

is inserted in the first three stages of the ViT encoder, reducing the number of tokens

after each stage. The model outputs both the activity classification and the corresponding

motion heatmaps.

A comprehensive visual representation of our model is given in Fig. 2. In168

the following sections, we provide a detailed explanation of each component169

within our model.170

3.1. Video Transformer and human-pose processing171

Consider a video segment, or clip, with dimensions T × C × H × W172

where T is the number of frames and C,H,W are the channels, height, and173

width of each frame, respectively. In our experiments, we define T = 16,174

C = 3, H = 224 and W = 224 respectively. To process a clip with a video175

transformer [11], we use the joint space-time cube embedding [33]. This176

technique samples non-overlapping cubes from the input video clip, which177

are then fed into the embedding layer. It divides the input video tensor into178

cubes of dimension 2 × C × 16 × 16, resulting in a set of Nvis = t · h · w179

visual tokens, where t = T
2
, h = H

16
, w = W

16
. We then project tokens to D180
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dimensions using a linear embedding layer, resulting in an input tensor with181

shape Xvis ∈ IRNvis×D. Next, we apply a positional embedding to each token,182

and a learnable class token, Xcls ∈ IR1×D, is concatenated to the sequence.183

For the computation of human-pose heatmaps, our model incorporates Np =184

hmres·hmres learnable tokens into the input sequence defined asXp ∈ IRNp×D,185

where hmres defines the heatmap feature map resolution and total number186

of tokens it is represented by. The complete sequence of tokens, including187

the class, pose and visual tokens X = (Xcls, Xp, Xvis) ∈ IRN×D where N =188

1 + Np + Nvis, is then processed using a standard ViT architecture. The189

transformed class token Xcls is used in a multilayer perceptron (MLP) for the190

classification task, while the Xp pose tokens are passed through a heatmaps191

estimation head to be compared against the ground truth heatmaps for pose192

estimation (one heatmap per human body keypoint).193

3.2. Human-pose estimation task194

A crucial part of our approach involves the use of temporal heatmaps,195

which enhance the training process and facilitate token selection. These196

heatmaps are derived from learnable tokens, similar to those in PPT [35].197

However, our method further refines PPT’s image-only processing by extend-198

ing its capabilities to handle a variable number of keypoints, video inputs,199

and multi-person heatmap predictions.200

Heatmap prediction starts with the introduction of additional tokens to201

the network, Xp. After passing through the encoder, these tokens are pro-202

cessed by a lightweight decoder (Heatmap head) to convert the tokens into203

heatmaps. The architecture of the Heatmap head consists of two deconvo-204

lution layers followed by a convolution layer with a 1 × 1 kernel and with205
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Figure 3: Motion heatmap generation. We aggregate the movement of the keypoints

through time into a single heatmap. The figure shows, from left to right, the same keypoint

at three different points in time and the corresponding aggregated heatmap.

output channels equal to the number of landmarks L [38]. The output of206

this decoder is then directly compared with the ground truth heatmaps by207

measuring the mean-squared error.208

While these tokens are inherently capable of predicting heatmaps for an209

individual frame within a video clip, we can adapt them to capture the en-210

tire sequence of movements by modifying the ground truth labels. The use211

of heatmaps instead of coordinate representations provides greater flexibility212

by allowing the incorporation of additional information directly within the213

heatmaps, without requiring any structural changes to the network architec-214

ture. We generate time-aware heatmaps by averaging the spatial heatmaps215

from the ground-truth labels, a Gaussian centered at the location of each an-216

notated landmark, across the whole video clip. It results in a ground truth217

heatmap where each keypoint movement within the clip is visible. Likewise,218

the framework can be extended to predict multi-person heatmaps by com-219

bining detection data from multiple individuals inside a single heatmap. In220

Fig. 3 we show an example motion heatmap for the multi-actor case.221
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3.3. POse-GUIded token SElection module222

The use of joint space-time cube embeddings for processing videos is com-223

putationally expensive, which is not ideal for use in environments with lim-224

ited computing power. Videos naturally contain repetitive information over225

time and areas with no information for action recognition. Thus, we propose226

the use of token pruning to reduce computation without losing important227

content.228

We introduce a novel approach named PO-GUISE. This method lever-229

ages the informative content of the class and heatmap tokens to improve230

the token selection process. Furthermore, to prevent the loss of potentially231

valuable information, PO-GUISE also merges some of the tokens that were232

not initially selected during the pruning step. This merging step is crucial233

as it compensates for any potentially relevant data that might not have been234

identified by the pruning algorithm. Fig. 2 shows an overview of this two-step235

token selection.236

We integrate our token selection module into the transformer network237

architecture at specific intervals. The ViT base architecture consists of 12238

layers, we divide these in 4 stages, where each stage consists of 4,3,3,2 lay-239

ers, respectively. We place the module at the output of each of the first240

three stages. This results in a total of three token selection layers within a241

ViT-base model (see Fig. 2). In doing so, our goal is to strike a balance be-242

tween reducing computational load and maintaining the critical information243

necessary to efficiently process the video.244
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3.3.1. Token pruning.245

Building upon existing token pruning methods like EVIT [14] and EVAD [9],246

our approach introduces a novel integration of spatial information. Specif-247

ically, we leverage heatmap tokens to guide attention towards visual to-248

kens that correspond to actor locations. Let AM ∈ IRM×Nvis×(1+Np) be249

the attention tensor from M heads, obtained from processing the tokens250

in X ∈ IRN×D, and then indexing by the attention the visual tokens (Xvis)251

give to the heatmap (Xp) and class (Xcls) tokens. We average across at-252

tention heads to condense it into an Nvis × (1 + Np) matrix, resulting in253

Avis ∈ IRNvis×(1+Np), see Fig. 4. We then multiply by a small constant factor254

κ, the class attention scores and by 1−κ, the heatmap token attention scores255

to denote the relative importance between them. Next, by summing the rows256

of Avis, we get a vector of token scores, T ∈ IRNvis . Each element in this257

tensor reflects the aggregated importance of a visual token influenced by the258

attention to the semantic tokens, (Xcls, Xp). The final pruning decision is259

based on these aggregated scores, allowing us to retain visual tokens that are260

deemed most significant in the context of both global class information and261

local spatial heatmap cues. The computed attention score for the i-th visual262

token can also be formulated as:263

T (i) = Avis(i, 0) · κ+

(
Np∑
j=1

Avis(i, j)

)
· (1− κ),

where Avis(i, j) is the attention score from i-th visual token to j-th semantic264

token, and κ is a constant factor to balance the importance between class265

and heatmap tokens.266

We use T to select the Nsel most significant tokens, based on their calcu-267
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Figure 4: Token pruning diagram. The attention obtained from Xvis guides the token

pruning. Each row in Avis corresponds to the attention a visual token (Attvis) gives to

the class (Attcls) and heatmap (Atthm) tokens. The Top-K tokens with most attention

(T ) are selected as output of the step, while the non-selected go through a merging step.

lated scores. The number of selected tokens is determined by Nsel = Nvis · ρ,268

where the keep rate ρ is a predefined threshold in the range (0, 1]. Result-269

ing in a set of selected tokens, Xsel ∈ IRNsel×D, and a set of discarded ones,270

Xdisc ∈ IR(Nvis−Nsel)×D. Xsel which will be processed in the next network271

block. Fig. 4 illustrates an overview of the pruning step.272

3.3.2. Token merging.273

The process of token pruning might exclude information that is important274

for later processing stages, or information that is not immediately apparent275

from examining the attention between classes and the associated heatmaps.276

To mitigate this, we introduce a token merging phase for the discarded tokens,277

15



Calculate
similarity

matrix

1

2

3

4

1 2 3 4

Sum cols. and get index
of K most similar tokens

For each selected token,
find its most similar token

and merge

1

2

3

4
1

2

Figure 5: Token merging diagram. The discarded tokens from the previous pruning step

are merged by their similarity. The similarity between tokens is measured by their atten-

tion to each other (Adisc). The Nmerge most similar tokens are selected and then merged

with their corresponding most similar token.

Xdisc. This phase employs cosine similarity to identify and merge tokens278

with highly aligned features. Our approach adapts the merging strategy of279

ToMe [13] by implementing an alternative matching algorithm that is better280

suited to our context. Unlike ToMe, which initially partitions tokens into281

two sets, our algorithm is more flexible, allowing the merging of an arbitrary282

number of tokens. The number of output tokens in this phase is controlled283

by Nmerge = Ndisc · λ with λ being a predefined threshold in the range (0, 1].284

Fig. 5 shows an overview of the merging method.285
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This phase begins with the use of the attention tensor Adisc obtained from286

Xdisc. We then use Adisc to compute the pairwise cosine similarity for these287

tokens, generating a similarity matrix S ∈ IRNdisc×Ndisc . The diagonal ele-288

ments of S are masked to prevent the tokens from merging with themselves.289

Each row of S represents the similarity of a specific token to all other tokens290

within Adisc.291

Next, for each token in Xdisc, we identify its merge candidate as the token292

with the highest cosine similarity, according to the respective row in S. Sub-293

sequently, we select the Nmerge tokens that exhibit the strongest similarity to294

their respective candidates. This selective aggregation ensures that the infor-295

mation from tokens with substantial similarity is preserved. These selected296

tokens are then merged with their corresponding candidates by averaging297

their feature vectors, resulting in a new set of tokens, Xmerge ∈ IRNmerge×D.298

Finally, Xmerge and Xsel are concatenated to be processed by the next net-299

work block. This process ensures that potentially relevant information is not300

lost and is passed on to subsequent layers. A detailed description of this301

module can be found in Algorithm 1.302

4. Experiments303

In this section, we evaluate our multi-task video transformer. In all exper-304

iments HM(P) stands for spatio-temporal heatmaps computed for multiple-305

person poses PR stands for the use of token pruning by: C using attention to306

the class token; MF using attention to the middle frame visual tokens; or P307

using attention to the tokens used to compute human motion heatmaps. MG308

stands for our proposal to merge pruned tokens. PO-GUISE corresponds to309
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Algorithm 1 Token Merging

1: X ∈ RN×D: Original feature tensor

2: F ∈ RN ′×D: Feature tensor of unselected tokens

3: k: Number of tokens to merge based on similarity

4: Fmerged ∈ RM×D: Merged feature tensor

5: S ∈ RN ′×N ′
: Similarity matrix

6: // Compute cosine similarity for discarded tokens

7: for i = 1 to N ′ do

8: for j = 1 to N ′ do

9: Sij ← Fi·Fj

∥Fi∥∥Fj∥ ▷ Cosine similarity

10: end for

11: end for

12: S ← S − diag(diag(S)) ▷ Set diagonal to zero

13: // Identify merge candidates based on similarity

14: for i = 1 to N do

15: merge candidate[i]←Max(Si,:)

16: end for

17: // Select the top-k most similar tokens based on S

18: merge candidate← sort(merge candidate)[: k]

19: // Merge source tokens with the selected ones by

20: Fmerged ← mean(X[merge candidate], axis = 0)

21: return Fmerged
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adding +HM(P)+PR(C+P)+MG to the baseline video transformer. Within310

each experiment, the results of the model in the first, second and third posi-311

tions are shown, respectively, in bold, underline or double underline.312

4.1. Datasets313

We use popular ADL recognition datasets for evaluation: NTU60 [5],314

NTU120 [39], and Toyota-Smarthome [17]. We employ two standard evalua-315

tion protocols established in the datasets, cross-subject (CS) and cross-view316

(CV) or cross-set (CSet). In the CS protocol, the training and testing sets are317

split according to the identity of the subject, ensuring that there is no overlap318

between actors. In the CV or CSet protocol, different camera viewpoints are319

used for training and testing, while all subjects are included in both sets. We320

present the overall accuracy (Acc.) or the average-per-class accuracy (mean321

class accuracy, mCA) when appropriate due to the class imbalance present322

in some datasets.323

NTU120 is a large-scale human action recognition data set for activities324

of daily living. It features 114K videos, multiple camera views, 106 sub-325

jects, and 120 different classes. We follow the cross-subject protocol (CS),326

where train-test sets feature different subjects, and cross-setup (CSet) proto-327

col which uses different camera setups in training and testing. The NTU60328

dataset is a subset that contains only 57K videos, 40 subjects, and 60 classes.329

We follow the CS and CV protocols. For both NTU datasets we report the330

overall accuracy (Acc.).331

Toyota-Smarthome is a dataset for activities of daily living performed by332

seniors. The dataset consists of 16K RGB clips of 31 activity classes per-333

formed by 18 subjects and 7 different camera viewpoints. We evaluate using334
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the cross-subject (CS) protocol with 31 classes. We also use two cross-view335

protocols, CV1 and CV2, both of which use a 19-class subset and cameras336

2 and 5 for testing and validation, respectively. For training, CV1 uses only337

camera 1 while CV2 uses cameras 1, 3, 4, 6, and 7. We report the mean class338

accuracy (mCA).339

4.2. Implementation details340

Unless otherwise stated, we use a ViT-base model with pre-trained weights341

from VideoMAEv2 [11]. These have been distilled from the pre-trained ViT-342

giant model vit b k710 dl from giant. For classification, we use cross-entropy343

loss and log-scaled MSE for heatmap prediction. We also use Nash-MTL [40]344

to balance both tasks. We set the heatmap resolution to hmres = 8. We345

use the AdamW [41] optimizer with a Cosine Annealing learning rate sched-346

uler [42]. Data augmentation includes Cutmix [43] (CMx), Mixup [44] (MxU)347

and RandAug [45]. For our PO-GUISE model, we set pruning keep rate to348

ρ = 0.6 and merge keep rate to λ = 0.3 in all experiments unless otherwise349

stated.350

All of our experiments are done on an NVIDIA DGX server with 4 A100-351

80GB GPUs. Training is done using Pytorch 2.3 [46], and a hyperparameter352

search is done on the learning rates using Wandb [47] with a Bayesian search353

on validation loss.354

For both NTU120 and NTU60 we follow the official implementation, dis-355

carding the examples where no pose was recorded. The detailed hyperparam-356

eters used for the experiments in NTU60, NTU120, and Toyota-Smarthome357

can be seen in Table 1.358

At inference we crop the central part of the frame in NTU with full height,359
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Configuration

Toyota-SM NTU/Toyota-SM

(CV) All/(CS)

Pre-trained weights vit b k710 dl from giant

MSE scaling factor 1000

Learning rate backbone 0.00007 0.0001

Learning rate heads 0.0003 0.0006

Optimizer Adamw

Learning rate scheduler Cosine Annealing

RandAug. M 7

RandAug. N 4

label smoothing 0.1

CMx & MxU prob. 1.0

CMx & MxU switch prob. 0.5

Gradient clipping 1.5

accumulate grad batches 2

Batch size 16

Merge feat. sim. matrix Attention

Epochs 350

Early Stopping 30

#Landmarks 13 25/13

PO-GUISE ρ 0.6

PO-GUISE λ 0.3

Table 1: Training parameters used in the main paper experiments.
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keeping the aspect ratio and resizing it to 224×224 pixels and each labeled360

clip was sampled uniformly over time. With Toyota-Smarthome we use the361

same cropping strategy as in NTU. We follow the official implementation and362

temporally divide each labeled clip into 4-second samples (128 frames). We363

reach the final classification by averaging the logits of the samples from each364

clip.365

4.3. Ablation study366

For the ablation experiments (see Table 2), we use the Toyota-Smarthome367

and NTU60 datasets following in both cases their cross-subject procedure.368

Our baseline result is obtained by fine-tuning a state-of-the-art video trans-369

former, VideoMAEv2 [11] pre-trained in Kinetics [4]. The accuracy for the370

baseline is 73.14% and 94.29% in Toyota-Smarthome and NTU60, respec-371

tively.372

4.3.1. Comparison with baseline.373

First, we test the baseline plus semantic information in the form of a374

human pose estimation task, see baseline+HM(P) in Table 2. On average,375

it increases the accuracy of all actions by 2.87 and 0.18 points in Toyota-376

Smarthome and NTU60, respectively. Pose information provides a significant377

improvement in the accuracy of some actions. A small drawback is the378

increased computational cost of 5% more GFLOPS, due to the extra tokens379

that need to be processed for the human pose estimation.380

We also compare different methods of token selection from the state-of-381

the-art on the baseline model while maintaining similar GFLOPS for each382

experiment. We test Top-K pruning by attention to the class token [12],383
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Method

Toyota-SM NTU60

mCA. Acc. GFlops

(↑) (↑) (↓)

VideoMAEv2-base (baseline) 73.14 94.29 360

+PR(C) 73.30 93.45 232

+PR(MF) 70.77 94.09 232

+PR(C)+MG 73.89 94.10 232

+HM(P) 76.01 94.47 379

+HM(P)+PR(C) 74.94 93.93 249

+HM(P)+PR(C+P) 75.41 94.57 249

+HM(P)+ToMe 73.80 88.35 190

+HM(P)+PR(C+P)+ToMe 74.65 93.84 249

+HM(P)+PR(C+P)+MG 76.98 94.84 249

Table 2: Ablation study. Test results on Toyota-Smarthome (CS) and NTU60 (CS) using

different model configurations. VideoMAEv2-base is the baseline experiment and the rest

are independent experiments adding something to baseline.
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baseline+PR(C), pruning by attention to the middle frame visual tokens [9],384

baseline+PR(MF), and adding our token merging solution to the class token385

pruning, baseline+PR(C)+MG. We find that for all configurations there is386

a loss in accuracy when compared to the baseline. In Toyota-Smarthome,387

utilizing PR(MF), similar to the method in EVAD [9], resulted in a larger loss388

in accuracy than with PR(C), -2.37% vs +0.16%. This means that the visual389

tokens in the middle frame are not as informative compared to relying only on390

the class token for token selection. The use of PR(C)+MG resulted in a small391

performance gain of 0.75% in Toyota-Smarthome while in NTU60 we obtain392

a small reduction of 0.19%. This suggests that merging tokens is beneficial393

in preserving valuable information that pruning alone may not capture. This394

is crucial for maintaining model accuracy while increasing computational395

efficiency. Note here that token pruning reduces GFLOPs by 35% (360 to396

232) and merging does not add a significant amount of processing.397

The last set of experiments in Table 2 assesses the influence of dif-398

ferent token selection methods in the multi-task model, baseline+HM(P).399

The first interesting result is that pruning guided by the class token, base-400

line+HM(P)+PR(C), affects the performance of the model, 1.07% and 0.54%401

less accuracy than baseline+HM(P) for both Toyota-Smarthome and NTU60.402

However, we found that our token pruning guided by class and pose to-403

kens, baseline+HM(P)+PR(C+P), outperforms pruning based solely on class404

information, baseline+HM(P)+PR(C), by 0.47% and 0.64%. In addition,405

employing the entire PO-GUISE model (baseline+HM(P)+PR(C+P)+MG)406

yields an additional improvement of 2.04% and 0.91% over PR(C). We per-407

form additional experiments to compare with the ToMe merging method [13].408
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Figure 6: Per-class accuracy comparison on Toyota-Smarthome (CS). We show results for

the baseline model (VideoMAEv2-base), Top-K pruning (PR(C)), and PO-GUISE. We

have merged some classes for an easier visualization.

The combination of baseline+HM(P)+PR(C+P)+ToMe shows a reduction409

of 2.33% in accuracy compared to PO-GUISE with our token merging pro-410

cedure. Lastly, PO-GUISE model achieves a reduction in GFLOPS around411

34% while also increasing the accuracy by 0.97% and 0.37% over the base-412

line+HM(P). These results highlight the effectiveness of pose-guided prun-413

ing and the merging process in efficiently selecting task-relevant tokens. In414

Fig. 6 we show the per-class-accuracy of our method against the baseline415

model and the Top-K (PR(C)) pruning technique. PO-GUISE obtains an416

improvement across virtually all classes. The improvement is most notable417

in classes that require the recognition of fine-grained actions, such as ”Use418

telephone,” ”Cut bread,” and ”Make tea,” where our method significantly419

outperforms the baseline.420
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Method
Toyota-SM GFlops

mCA. (↑) (↓)

VideoMAEv2-base 73.14 360

+PO-GUISE 76.98 249

Internvideo2 75.64 509

+PO-GUISE 77.03 399

Table 3: Test results on Toyota-Smarthome (CS) with RGB-only modality at inference.

To demonstrate the flexibility of PO-GUISE and its ability to be inte-421

grated into other ViT-based backbones, we have performed an additional422

experiment using InternVideo2-B/14 [18], see Table 3. It increases the accu-423

racy of VideoMAE by 2.5%, but with 41% more GFLOPS. With this model,424

the behavior of PO-GUISE is similar. It reduces the number of GFLOPS by425

a remarkable 27% while increasing the accuracy by 1.5%. In the rest of the426

paper we use VideoMAEv2-base as the backbone.427

4.3.2. Efficiency analysis.428

In this experiment we explore the trade-off between accuracy and com-429

putational cost incurred by different token selection methods applied on430

the multi-task model, baseline+HM(P). In Fig. 7 we show the curves of431

GFLOPS vs. accuracy obtained by training with different values of ρ and432

λ. For the experiments +HM(P)+PR(C+P) and +HM(P)+PR(P) ρ ∈433

{0.3, 0.4, 0.55, 0.7}. For the +HM(P)+PR(C+P)+MG experiments, ρ ∈434

{0.3, 0.4, 0.45, 0.6} and λ ∈ {0.1, 0.2, 0.2, 0.3}.435

The curve associated with PO-GUISE (baseline+HM(P)+PR(C+P)+MG)436

is always on top for different proportions of selected tokens (ρ). Interestingly,437
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at 166 GFlops our accuracy is still 94.50%, on top of previous methods.438

The difference with the same pruning method but without token merging439

(PR(C+P)) is significant, while not using pose tokens in pruning reduces440

even more the performance in all values of ρ.441

We have also conducted experiments on a Jetson Orin NX (16GB) to eval-442

uate performance in a resource-limited device. The baseline model Video-443

MAEv2 processes one sample every 1140 ms with 3608 MB memory usage.444

This further increases to 1290 ms, and 4125 MB when incorporating human445

pose estimation. PO-GUISE at 249 GFLOPS reduces these to 640 ms and446

2973 MB, effectively decreasing by 50% and 27% the computational time and447

cost. This gain in performance is especially important in the Jetson archi-448

tecture, where the GPU and CPU share the same unified memory, meaning449

that a lower model memory requirement leaves more space for other sec-450

ondary CPU tasks. Our memory usage, 2973 MB, also makes it feasible to451

implement it on the lower-end Jetson models with 4 GB of memory.452

4.3.3. Visualizations.453

In this section we show some qualitative results at low token keep rates of454

our improved token selection method PO-GUISE against the top performer455

token pruning technique [12], Top-K, and the baseline VideoMAEv2-base456

model. For a fair comparison, we have configured both models to have a457

similar number of visual tokens and GFLOPS. Specifically, PO-GUISE uses458

the keep rates ρ = 0.1, λ = 0.1 and the Top-K model uses ρ = 0.2. In459

Fig. 8 we show some examples, each square represents a visual token and its460

normalized attention to class token. If a visual token was selected more than461

once in time, its attention is aggregated. For ease of comparison, we have462
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used the same color map as in Fig. 1. We can see that PO-GUISE effectively463

selects the tokens related to the person, while Top-K and the Baseline tend464

to select irrelevant tokens. We believe this is a side-effect from training ViTs.465

At inference, these use low-informative background areas of images as a form466

of repurposed internal computation [48].467

The human pose detection task is well learned by the PO-GUISE as shown468

in Figs. 9 and 10. Note that we are learning one motion heatmap per body469

joint which consists of the sum of probability maps from the 16 frames of470

the clip. For ease of visualization, we show in the same image the motion471

heatmaps corresponding to all body joints.472

4.3.4. Discussion.473

Our contribution is a token selection procedure guided by human motion474

that, at default settings, not only maintains, but improves the accuracy of475

a top-performing video transformer. Unlike previous methods, our approach476

results in a reduction of 30% in GFLOPs. However, since we guide the477

attention of the transformer towards areas with human motion, it also results478

in a final increase of the accuracy.479

4.4. Comparison with the state-of-the-art480

We compare PO-GUISE with state-of-the-art techniques in different ADL481

recognition datasets: NTU60, NTU120 (Table 5), and Toyota-Smarthome482

(Table 4).483

Our method achieves new state-of-the-art results on the Toyota-SmartHome484

dataset (Table 4), surpassing the previous state-of-the-art, π-ViT [10], by485

4.07%, 3.77%, and 11.32% across all protocols, respectively. The lower per-486
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(a) Baseline (b) Top-K Pruning (c) PO-GUISE

Figure 8: Visual Token Attention and Selection. Brighter colors indicate higher attention

from the selected visual tokens to the class token. For Top-K Pruning and PO-GUISE,

we show the attention from the selected tokens at the last stage. For the baseline, the

attention maps are obtained from the last layer.
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Figure 9: Sample heatmaps from the NTU120 (CS) dataset test set using PO-GUISE. The

first column corresponds to the middle frame of the video clip, the second column displays

the temporal heatmaps used as training labels, and the third column shows the predicted

heatmaps.
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Figure 10: Sample heatmaps from the Toyota-SmartHome (CS) dataset test set using PO-

GUISE. The first column corresponds to the middle frame of the video clip, the second

column displays the temporal heatmaps used as training labels, and the third column

shows the predicted heatmaps.
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Method
CS CV1 CV2 GFlops

mCA. (↑) mCA. (↑) mCA. (↑) (↓)

AssembleNet++[49] 63.6 - - -

MotionFormer[50] 65.8 45.2 51.0 369

LTN[51] 65.9 - 54.6 -

TimeSFormer [52] 68.4 50.0 60.6 784

VPN++ [1] 69.0 - 54.9 -

Video Swin [34] 69.8 36.6 48.6 281

π-ViT [10] 72.9 55.2 64.8 785

VideoMAEv2-base 73.14 55.20 67.68 360

+ HM(P) 76.01 57.31 71.82 379

PO-GUISE 76.98 58.98 76.12 249

Table 4: Test results on Toyota-Smarthome over the CS, CV1 and CV2 protocols.

Method

NTU60 NTU120

GFlopsCS CV CS CSet

Acc. (↑) Acc. (↑) Acc. (↑) Acc. (↑) (↓)

VideoCon [53] 91.4 98.0 85.6 87.5 -

ViewCLR [54] 89.7 94.1 86.2 84.5 -

VPN++ [1] 93.5 99.1 86.7 89.3 -

MotionFormer[50] 85.7 91.6 87.0 87.9 369

TimeSFormer [52] 93.0 97.2 90.6 91.6 784

Video Swin [34] 93.4 96.6 91.4 92.1 281

π-ViT [10] 94.0 97.9 91.9 92.9 785

VideoMAEv2-base 94.29 90.91 91.73 89.64 360

+ HM(P) 94.47 91.27 93.36 91.02 379

PO-GUISE 94.84 92.31 93.47 92.11 249

Table 5: Test results on NTU datasets with RGB-only modality at inference.
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formance observed in the CV1 protocol, compared to other protocols, is487

consistent with previous work due to the limited training data available for488

this challenging single-camera setting.489

In the NTU datasets (Table 5), we also surpass state-of-the-art perfor-490

mance on all cross-subject benchmarks compared to methods utilizing only491

RGB input. PO-GUISE outperforms the prior results of π-ViT [10] by 0.84%,492

and 1.57% on each dataset’s cross-subject protocol (CS), respectively. Im-493

portantly, we achieve these performance gains while simultaneously reducing494

the computational cost of π-ViT by 536 GFLOPS.495

The difference in performance observed between the Toyota-SmartHome496

and NTU datasets for cross-view protocols reflects the difference in diffi-497

culty between these benchmarks. In Toyota-SmartHome, the test cameras498

maintain a similar viewpoint to the training cameras, mostly changing the499

room the subject is present in. The NTU datasets, and NTU 60 in partic-500

ular, present a significantly more challenging cross-view scenario, where the501

cameras used during testing are placed quite differently compared to those502

utilized for training. However, the difference in size between these datasets503

explains the better accuracy in NTU. Previous methods have attempted to504

address this challenge by incorporating 3D pose information during training,505

π -ViT [10] and VPN++ [1]. Overall, these results highlight the effectiveness506

of PO-GUISE in cross-subject protocols, with the use of 3D pose information507

as a promising avenue for future work focused on cross-view protocols.508
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5. Conclusions509

State-of-the-art video transformers for action recognition operate with a510

quadratic complexity regarding the number of input tokens, which presents a511

significant computational challenge. Although token pruning offers a promis-512

ing approach to reduce this computational burden, existing methods often513

lead to a decrease in action recognition accuracy.514

Our method addresses this limitation by leveraging human motion infor-515

mation to selectively retain the most informative tokens for action recogni-516

tion. This approach achieves a compelling balance between accuracy and517

computational efficiency. Specifically in default settings, our method reduces518

the number of visual tokens, resulting in a 30% reduction in GFLOPS while519

simultaneously increasing accuracy by up to 8%.520

Although our method demonstrates notable success on all cross-subject521

benchmarks, further research is needed to enhance computational efficiency522

and accuracy on more challenging cross-view action recognition tasks. Our523

future work will explore the integration of additional semantic tasks to further524

improve token selection, as well as the incorporation of 3D pose information525

during training.526

The models and code required to reproduce the experiments described in527

this paper will be made publicly available upon publication.528
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