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Abstract

Large pre-trained video transformers are becoming the standard architec-
ture for video processing due to their exceptional accuracy. However, their
quadratic computational complexity has been a major obstacle to their prac-
tical application in problems that require the recognition of precise motion
patterns in video, such as in the recognition of Activities of Daily Living
(ADL). Techniques like token pruning help mitigate their computational cost,
but overlook some specific aspects of this task such as the actor movement.
To address this we propose an improved token selection method that in-
tegrates semantic information from the ADL recognition task with that of
human motion. Our model relies on a multi-task architecture that infers
human pose and activity classification from RGB images. We show that
guiding token pruning with motion information significantly improves the
trade-off between higher efficiency, obtained by reducing the number of to-
kens, and accuracy of the classification task. We evaluate our model on three

popular ADL recognition benchmarks with their respective cross-subject and
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cross-view setups. In our experiments, a video transformer modified with our
proposed modules sets a new state-of-the-art on the ADL recognition task
whilst achieving significant reductions in computational cost.

Keywords: activities of daily living recognition, efficiency in transformers,

token selection, motion heatmaps

1. Introduction

Activities of Daily Living (ADL) encompass the fundamental tasks of
daily life, such as eating, cooking, and managing medications. They play a
crucial role in assessing a person’s ability to function independently. Their
recognition is used to monitor the elderly or people with disabilities and
to evaluate their functional ability in conditions such as dementia, stroke,
or aging. The models and techniques of computer vision used to recognize
them share similarities with the broader field of human action recognition.
However, ADLs present specific challenges, such as the existence of short and
subtle actions that exhibit a similar visual appearance but differ in motion [1].
This requires the precise analysis of human body motion patterns within
videos’ spatio-temporal context.

In the recognition of human actions we have seen a transition from meth-
ods using CNNs [2, 3, 4] and 3D-CNNs [5, 6, 7] or a mixture of both [4] to
transformers [8, 9, 10]. Using self-supervised learning techniques and the use
of large-scale datasets, recent video transformer models achieve the highest
accuracy on the human action recognition problem [11]. A key limitation in
using these models to analyze video is their quadratic complexity, which in-

creases the computational demands as the number of spatio-temporal tokens
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grows. Although progress has been made in this area, there is still consid-
erable room for improvement, especially for recognizing subtle motions and
when the trade-off between accuracy and efficiency is of practical relevance.
Both are crucial ingredients in making the recognition of ADL a household
product. Applications such as falling detection or ensuring that medication
is taken correctly demand real-time performance, making computationally
expensive models impractical.

One technique to achieve a better trade-off between accuracy and ef-
ficiency is token selection, where a percentage of tokens are discarded at
certain blocks within the transformer model, reducing the total number of
tokens in the model. Popular techniques include Top-K [12], where token
selection is guided by keeping the K tokens with the greatest attention to
the class token, merging similar tokens [13], or a mixture of both [14, 15, 16].
However, these techniques often lack consideration for factors such as human
pose and its temporal dynamics. This can lead to suboptimal performance
in ADL scenarios that require a nuanced understanding of human actions,
resulting in a potential loss of critical information.

In this paper, we present a token selection method for transformer models
that integrates semantic information from both the activity recognition task
and human motion. We aim to improve the attention of the transformer on
the actor’s motion and, at the same time, reduce computational requirements
of the model. Our module can be integrated on ViT-based architectures such
as InternVideo2 [18] and VideoMAEv2 [11]. These transformer architectures
are pre-trained with a self-supervised strategy and refined with a large human

action database. Our method, called PO-GUISE, is trained in a multi-task



0.10

0.00

(a) Baseline ViT model (b) PO-GUISE (p =0.1,A =0.1)

Figure 1: Attention maps for the ”Drink.Frombottle” action on Toyota-Smarthome
(CS) [17]. Colored rectangles represent the attention weight assigned by each visual token
to the classification token, lighter yellow rectangles indicating a low attention from that
token. PO-GUISE concentrates attention on task-relevant regions, improving computa-

tional efficiency by discarding irrelevant tokens.
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fashion using RGB videos. They are converted into spatiotemporal visual
tokens and are processed alongside heatmap tokens representing temporal
representations of human poses. We have extended the traditional heatmap
to predict the motion of the keypoints of multiple actors in video. Our token
selection method prunes spatiotemporal visual tokens, referred to as wvisual
tokens, that do not pay enough attention to semantic tokens, those relevant
to human motion and action recognition. To ensure that information is
not lost during pruning, our merging method summarizes the pruned tokens
by averaging similar dropped tokens. Fig. 1 shows that our method selects
tokens primarily on the actor, while the baseline model focuses on potentially
irrelevant parts of the scene. To our knowledge, we are the first to improve
the accuracy of transformer models for ADL recognition while reducing its
computational cost using human pose and motion information. Moreover,
our approach does not require an external keypoint detection model. In
summary, we pioneer the introduction of human motion information into the
token selection process in the video transformer architecture.

The contributions of our work are as follows.

e A token selection method guided by human motion and class informa-
tion tailored to the recognition of activities of daily living. Focuses the
attention of the model on the motion of the actor and improves the
trade-off between efficiency and accuracy compared to other methods

from the state-of-the-art, even at very low token keep rates.

e A representation of human motion based on a feature map shared by
all body keypoint temporal heatmaps, that is agnostic of the number

of people in the scene and allows our method to be used on multi-actor
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datasets.

e Our method sets a new state-of-the-art in various activities of daily
living RGB video benchmarks, while being much more efficient than

other top performing methods based on video transformers.

2. Related work

In this section, we review the human action recognition and activities
of daily living literature. Recognizing actions in videos requires considering
variations in the location and poses of actors within the scene, as well as
their movement.

Human Action Recognition and ADL. One way to analyze motion in
videos is to compute convolutions in both the image and the time dimensions
with 3D CNNs [5]. A popular approach is the two-stream CNN [2, 3, 4] that
uses both RGB and optical flow maps. However, optical flow only gives
short temporal scale information. More recent work use a Recurrent Neural
Network (RNN) [19] on top of a two-stream network [3] to process a longer
but still limited temporal context. The adoption of video transformers in
action recognition allows for a holistic temporal context to be established [8,
9, 10}, although with quadratic complexity in the number of visual tokens.

The human pose and its realization in the form of probability maps, or
heatmaps, corresponding to the location of body keypoints has proven to be
very discriminative in action recognition [20, 21, 22, 23, 24, 25, 26, 27|. Many
previous studies have used an external human pose estimation model [22,
21, 23, 28, 29, 30, 31]. This is also the case with recent transformer based

methods [25, 26, 27]. Having an external pose estimation model not only

6
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increases the computational cost but also decreases the system robustness in
situations where the external model fails. Few methods adopt a multi-task
strategy to estimate pose and recognize actions in the same model [19, 32]. A
recent approach achieves top performance in the recognition of activities of
daily living by combining 2D and 3D human pose [10]. In our solution we also
adopt a multi-task strategy. However, unlike these approaches, we use human
pose to select the most informative video tokens by guiding the model’s
attention to human motion, while reducing the computational requirements
of the model.

Computational requirements of Video Transformers. The quadratic
complexity in the number of tokens in a transformer is a fundamental limi-
tation for its use in real-time video analysis. This problem can be addressed
in different ways. Some methods modify the attention mechanism itself to
reduce this quadratic complexity. For example, one approach is to factor-
ize attention along the spatial and temporal dimensions [33]. Another is to
restrict attention to small local windows and shift these windows hierarchi-
cally [34].

Another approach is token selection, in which a dedicated mechanism
prunes or merges the visual tokens processed by the network, discarding
those considered irrelevant to the task. This is achieved while preserving the
integrity of the transformer’s weights and underlying architecture.

Token selection methods can be categorized into pruning or merging
strategies. Token pruning methods focus on identifying and removing less
informative tokens. EViT [14], which uses a Top-K approach, selects the K

tokens with the highest attention to the class token, where the non-selected
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tokens are fused into one token. PPT [35], introduces a learnable token per
body keypoint and uses their attention values to prune visual tokens. The
main limitation of PPT is the fixed number of keypoint tokens used in train-
ing, which limits the number of actors in the scene. EVAD [9], leverages
attention to visual tokens on a key-frame to determine which tokens to re-
tain. The TPS (Token Pruning and Squeezing) module [15], is a module for
image transformers. It uses a Top-K token pruning step and a squeeze step
that merges the non-selected tokens into the selected ones via matching and
similarity-based fusing. Another form of guiding pruning from image infor-
mation is based on patches, where inter-patch attention and dynamic pruning
are applied to take advantage of the rich structure of the patch relations [36].

Token merging techniques combine similar tokens to reduce redundancy,
such as ToMe [13], which merges similar tokens, as dictated by their cosine
similarity, into new ones. DTMFormer [37], which adaptively clusters tokens
into fewer semantic tokens via an attention-guided mechanism. Another
technique is a partitioned token fusion and pruning strategy. It discards
low-correlation background token information and fuses medium-correlation
token. This technique has been applied to the field of object tracking [16].

Haurum et al. [12] provides a systematic comparison of ten popular token
reduction methods, finding that pruning-based methods such as Top-K and
EViT [14] consistently perform best.

However, a significant limitation of existing token selection methods is
their lack of task-specific considerations. Specifically for the ADL task, these
methods do not account for the human pose and its temporal dynamics

directly, potentially resulting in the loss of crucial information.
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Our proposal. We present a novel token selection method guided by
both temporal human pose heatmaps and ADL. We use a multi-task strat-
egy, estimating both human motion heatmaps and activity, which differs
from the usual and less efficient approach using externally provided land-
marks [25, 26, 27]. Also, and differently to m-Vit [10], our approach uses
the estimated motion to reduce the number of spatio-temporal tokens. This
strategy focuses the attention of the model on the actor’s movements and
reduces the computational complexity of the transformer. As a result, it
maintains or even enhances the accuracy of the baseline model. In addition,
its accuracy decreases much more slowly than that of other token selection
methods at very low computational budgets. Compared with the baseline
model, PO-GUISE in default settings reduces computation by a remarkable
30% and improves the accuracy by 0.55%, 1.74% and 3.84% in the NTUGO0,
NTU120 and Toyota-Smarthome datasets, respectively, in the cross-subject
protocol (see Tables 5 and 4).

3. POse-GUlded multi-task video transformer with token SElec-
tion (PO-GUISE)

Our approach incorporates a pre-trained video transformer [11, 18] as its
encoding mechanism. The video transformer is fine-tuned in different ac-
tion recognition datasets. To facilitate human body keypoints localization
and guide our token selection, we have integrated the pose heatmaps predic-
tion and action classification tasks. Additionally, to mitigate the computa-
tional demands associated with video transformer models, we introduce the

PO-GUISE module, which effectively reduces the number of visual tokens.
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Figure 2: Our architecture consists of 4 stages. An input clip is tokenized and processed by
a ViT encoder alongside learnable class and heatmap tokens. Our token selection module
is inserted in the first three stages of the ViT encoder, reducing the number of tokens
after each stage. The model outputs both the activity classification and the corresponding

motion heatmaps.

A comprehensive visual representation of our model is given in Fig. 2. In
the following sections, we provide a detailed explanation of each component

within our model.

3.1. Video Transformer and human-pose processing

Consider a video segment, or clip, with dimensions 7" x C' x H x W
where T' is the number of frames and C, H, W are the channels, height, and
width of each frame, respectively. In our experiments, we define 7" = 16,
C =3, H=224 and W = 224 respectively. To process a clip with a video
transformer [11], we use the joint space-time cube embedding [33]. This
technique samples non-overlapping cubes from the input video clip, which
are then fed into the embedding layer. It divides the input video tensor into
cubes of dimension 2 x C' x 16 x 16, resulting in a set of Ny = t-h-w
H w

16w = 15- We then project tokens to D

visual tokens, where t = %,h = 16

10
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dimensions using a linear embedding layer, resulting in an input tensor with
shape X,;s € R™=*P_ Next, we apply a positional embedding to each token,
and a learnable class token, X, € IR™P | is concatenated to the sequence.
For the computation of human-pose heatmaps, our model incorporates N, =
hmyes-hm,.s learnable tokens into the input sequence defined as X, € RN»*D )
where hm,., defines the heatmap feature map resolution and total number
of tokens it is represented by. The complete sequence of tokens, including
the class, pose and visual tokens X = (X5, Xp, Xpis) € RM*P where N =
1 + N, + N,s, is then processed using a standard ViT architecture. The
transformed class token X4 is used in a multilayer perceptron (MLP) for the
classification task, while the X, pose tokens are passed through a heatmaps
estimation head to be compared against the ground truth heatmaps for pose

estimation (one heatmap per human body keypoint).

3.2. Human-pose estimation task

A crucial part of our approach involves the use of temporal heatmaps,
which enhance the training process and facilitate token selection. These
heatmaps are derived from learnable tokens, similar to those in PPT [35].
However, our method further refines PPT’s image-only processing by extend-
ing its capabilities to handle a variable number of keypoints, video inputs,
and multi-person heatmap predictions.

Heatmap prediction starts with the introduction of additional tokens to
the network, X,. After passing through the encoder, these tokens are pro-
cessed by a lightweight decoder (Heatmap head) to convert the tokens into
heatmaps. The architecture of the Heatmap head consists of two deconvo-

lution layers followed by a convolution layer with a 1 x 1 kernel and with

11
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Figure 3: Motion heatmap generation. We aggregate the movement of the keypoints

through time into a single heatmap. The figure shows, from left to right, the same keypoint

at three different points in time and the corresponding aggregated heatmap.

output channels equal to the number of landmarks L [38]. The output of
this decoder is then directly compared with the ground truth heatmaps by
measuring the mean-squared error.

While these tokens are inherently capable of predicting heatmaps for an
individual frame within a video clip, we can adapt them to capture the en-
tire sequence of movements by modifying the ground truth labels. The use
of heatmaps instead of coordinate representations provides greater flexibility
by allowing the incorporation of additional information directly within the
heatmaps, without requiring any structural changes to the network architec-
ture. We generate time-aware heatmaps by averaging the spatial heatmaps
from the ground-truth labels, a Gaussian centered at the location of each an-
notated landmark, across the whole video clip. It results in a ground truth
heatmap where each keypoint movement within the clip is visible. Likewise,
the framework can be extended to predict multi-person heatmaps by com-
bining detection data from multiple individuals inside a single heatmap. In

Fig. 3 we show an example motion heatmap for the multi-actor case.

12
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3.8. POse-GUIded token SElection module

The use of joint space-time cube embeddings for processing videos is com-
putationally expensive, which is not ideal for use in environments with lim-
ited computing power. Videos naturally contain repetitive information over
time and areas with no information for action recognition. Thus, we propose
the use of token pruning to reduce computation without losing important
content.

We introduce a novel approach named PO-GUISE. This method lever-
ages the informative content of the class and heatmap tokens to improve
the token selection process. Furthermore, to prevent the loss of potentially
valuable information, PO-GUISE also merges some of the tokens that were
not initially selected during the pruning step. This merging step is crucial
as it compensates for any potentially relevant data that might not have been
identified by the pruning algorithm. Fig. 2 shows an overview of this two-step
token selection.

We integrate our token selection module into the transformer network
architecture at specific intervals. The ViT base architecture consists of 12
layers, we divide these in 4 stages, where each stage consists of 4,3,3,2 lay-
ers, respectively. We place the module at the output of each of the first
three stages. This results in a total of three token selection layers within a
ViT-base model (see Fig. 2). In doing so, our goal is to strike a balance be-
tween reducing computational load and maintaining the critical information

necessary to efficiently process the video.

13
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3.3.1. Token pruning.

Building upon existing token pruning methods like EVIT [14] and EVAD [9],
our approach introduces a novel integration of spatial information. Specif-
ically, we leverage heatmap tokens to guide attention towards visual to-
kens that correspond to actor locations. Let A, € IRM*Nisx(+Np) 150
the attention tensor from M heads, obtained from processing the tokens
in X € R"*P, and then indexing by the attention the visual tokens (X,;)
give to the heatmap (X,) and class (X.s) tokens. We average across at-
tention heads to condense it into an N, X (1 + N,) matrix, resulting in
Ayis € RNvis*(1H4No) gee Fig. 4. We then multiply by a small constant factor
Kk, the class attention scores and by 1— k, the heatmap token attention scores
to denote the relative importance between them. Next, by summing the rows

Neis - Each element in this

of A,;s, we get a vector of token scores, 7 € IR
tensor reflects the aggregated importance of a visual token influenced by the
attention to the semantic tokens, (X, X,). The final pruning decision is
based on these aggregated scores, allowing us to retain visual tokens that are
deemed most significant in the context of both global class information and

local spatial heatmap cues. The computed attention score for the i-th visual

token can also be formulated as:

T(Z) = Am’s<i,0) - K+ (Zp Ams(Z?])) ’ (1 - 'Li)a

j=1
where A,;5(i, 7) is the attention score from i-th visual token to j-th semantic
token, and k is a constant factor to balance the importance between class
and heatmap tokens.

We use T to select the N, most significant tokens, based on their calcu-

14
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Figure 4: Token pruning diagram. The attention obtained from X,;s; guides the token
pruning. Each row in A,;s corresponds to the attention a visual token (Att,;s) gives to
the class (Attqs) and heatmap (Attp.,) tokens. The Top-K tokens with most attention

(T) are selected as output of the step, while the non-selected go through a merging step.

lated scores. The number of selected tokens is determined by Ny = Nyis - p,
where the keep rate p is a predefined threshold in the range (0, 1]. Result-
ing in a set of selected tokens, X, € R™<*P and a set of discarded ones,
Xiise € IR (Nvis =Nset) XD X which will be processed in the next network

block. Fig. 4 illustrates an overview of the pruning step.

3.3.2. Token merging.

The process of token pruning might exclude information that is important
for later processing stages, or information that is not immediately apparent
from examining the attention between classes and the associated heatmaps.

To mitigate this, we introduce a token merging phase for the discarded tokens,

15
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Figure 5: Token merging diagram. The discarded tokens from the previous pruning step
are merged by their similarity. The similarity between tokens is measured by their atten-
tion to each other (Agisc). The Nyerge most similar tokens are selected and then merged

with their corresponding most similar token.

Xgise. This phase employs cosine similarity to identify and merge tokens
with highly aligned features. Our approach adapts the merging strategy of
ToMe [13] by implementing an alternative matching algorithm that is better
suited to our context. Unlike ToMe, which initially partitions tokens into
two sets, our algorithm is more flexible, allowing the merging of an arbitrary
number of tokens. The number of output tokens in this phase is controlled
by Nimerge = Naise - A with A being a predefined threshold in the range (0, 1].

Fig. 5 shows an overview of the merging method.
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This phase begins with the use of the attention tensor Ag;,. obtained from
Xgise. We then use Ay to compute the pairwise cosine similarity for these
tokens, generating a similarity matrix S € IRMdaise*Ndise . The diagonal ele-
ments of S are masked to prevent the tokens from merging with themselves.
Each row of S represents the similarity of a specific token to all other tokens
within Agse.

Next, for each token in Xg;,., we identify its merge candidate as the token
with the highest cosine similarity, according to the respective row in S. Sub-
sequently, we select the Np,eqe tokens that exhibit the strongest similarity to
their respective candidates. This selective aggregation ensures that the infor-
mation from tokens with substantial similarity is preserved. These selected
tokens are then merged with their corresponding candidates by averaging
their feature vectors, resulting in a new set of tokens, X,crge € RNmergex D
Finally, X,erge and X, are concatenated to be processed by the next net-
work block. This process ensures that potentially relevant information is not
lost and is passed on to subsequent layers. A detailed description of this

module can be found in Algorithm 1.

4. Experiments

In this section, we evaluate our multi-task video transformer. In all exper-
iments HM(P) stands for spatio-temporal heatmaps computed for multiple-
person poses PR stands for the use of token pruning by: €' using attention to
the class token; MF' using attention to the middle frame visual tokens; or P
using attention to the tokens used to compute human motion heatmaps. MG

stands for our proposal to merge pruned tokens. PO-GUISE corresponds to

17



Algorithm 1 Token Merging

1: X € RV*P: Original feature tensor

2: F € RN'*P: Feature tensor of unselected tokens
3: k: Number of tokens to merge based on similarity
4: Frergea € RM*P: Merged feature tensor

5.8 € RV>N': Similarity matrix

6: // Compute cosine similarity for discarded tokens
7. for i =1 to N’ do

8: for j =1to N’ do

Fy-F; . .
9: Sij m > Cosine similarity
10: end for

11: end for

12: S« S — diag(diag(5)) > Set diagonal to zero

13: // Identify merge candidates based on similarity
14: for 1 =1to N do

15: merge_candidate[i] < MAX(S;.)
16: end for

17: // Select the top-k most similar tokens based on S
18: merge_candidate < sort(merge_candidate)[: k]

19: // Merge source tokens with the selected ones by

20: Frnerged <— mean(X [merge_candidate], axis = 0)

21: return Fepged

18
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adding +HM(P)+PR(C+P)+MG to the baseline video transformer. Within
each experiment, the results of the model in the first, second and third posi-

tions are shown, respectively, in bold, underline or double underline.

4.1. Datasets

We use popular ADL recognition datasets for evaluation: NTUG60 [5],
NTU120 [39], and Toyota-Smarthome [17]. We employ two standard evalua-
tion protocols established in the datasets, cross-subject (CS) and cross-view
(CV) or cross-set (CSet). In the CS protocol, the training and testing sets are
split according to the identity of the subject, ensuring that there is no overlap
between actors. In the CV or CSet protocol, different camera viewpoints are
used for training and testing, while all subjects are included in both sets. We
present the overall accuracy (Acc.) or the average-per-class accuracy (mean
class accuracy, mC'A) when appropriate due to the class imbalance present
in some datasets.

NTU120 is a large-scale human action recognition data set for activities
of daily living. It features 114K videos, multiple camera views, 106 sub-
jects, and 120 different classes. We follow the cross-subject protocol (CS),
where train-test sets feature different subjects, and cross-setup (CSet) proto-
col which uses different camera setups in training and testing. The NTUG0
dataset is a subset that contains only 57K videos, 40 subjects, and 60 classes.
We follow the CS and CV protocols. For both NTU datasets we report the
overall accuracy (Acc.).

Toyota-Smarthome is a dataset for activities of daily living performed by
seniors. The dataset consists of 16K RGB clips of 31 activity classes per-

formed by 18 subjects and 7 different camera viewpoints. We evaluate using

19
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the cross-subject (CS) protocol with 31 classes. We also use two cross-view
protocols, CV1 and CV2, both of which use a 19-class subset and cameras
2 and 5 for testing and validation, respectively. For training, CV1 uses only
camera 1 while CV2 uses cameras 1, 3, 4, 6, and 7. We report the mean class

accuracy (mCA).

4.2. Implementation details

Unless otherwise stated, we use a ViT-base model with pre-trained weights
from VideoMAEv2 [11]. These have been distilled from the pre-trained ViT-
giant model vit_b_k710_dl_from_giant. For classification, we use cross-entropy
loss and log-scaled MSE for heatmap prediction. We also use Nash-MTL [40]
to balance both tasks. We set the heatmap resolution to hm,., = 8. We
use the AdamW [41] optimizer with a Cosine Annealing learning rate sched-
uler [42]. Data augmentation includes Cutmix [43] (CMx), Mixup [44] (MxU)
and RandAug [45]. For our PO-GUISE model, we set pruning keep rate to

= 0.6 and merge keep rate to A = 0.3 in all experiments unless otherwise
stated.

All of our experiments are done on an NVIDIA DGX server with 4 A100-
80GB GPUs. Training is done using Pytorch 2.3 [46], and a hyperparameter
search is done on the learning rates using Wandb [47] with a Bayesian search
on validation loss.

For both NTU120 and NTUG60 we follow the official implementation, dis-
carding the examples where no pose was recorded. The detailed hyperparam-
eters used for the experiments in NTU60, NTU120, and Toyota-Smarthome
can be seen in Table 1.

At inference we crop the central part of the frame in NTU with full height,
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Toyota-SM |NTU /Toyota-SM
Configuration (CV) All/(CS)
Pre-trained weights vit_b_k710_dl_from_giant
MSE scaling factor 1000
Learning rate backbone 0.00007 0.0001
Learning rate heads 0.0003 0.0006
Optimizer Adamw
Learning rate scheduler Cosine Annealing
RandAug. M 7
RandAug. N 4
label smoothing 0.1
CMx & MxU prob. 1.0
CMx & MxU switch prob. 0.5
Gradient clipping 1.5
accumulate_grad_batches 2
Batch size 16
Merge feat. sim. matrix Attention
Epochs 350
Early Stopping 30
#Landmarks 13 25/13
PO-GUISE p 0.6
PO-GUISE A 0.3

Table 1: Training parameters used in the main paper experiments.
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keeping the aspect ratio and resizing it to 224x224 pixels and each labeled
clip was sampled uniformly over time. With Toyota-Smarthome we use the
same cropping strategy as in NTU. We follow the official implementation and
temporally divide each labeled clip into 4-second samples (128 frames). We
reach the final classification by averaging the logits of the samples from each

clip.

4.3. Ablation study

For the ablation experiments (see Table 2), we use the Toyota-Smarthome
and NTUG60 datasets following in both cases their cross-subject procedure.
Our baseline result is obtained by fine-tuning a state-of-the-art video trans-
former, VideoMAEv2 [11] pre-trained in Kinetics [4]. The accuracy for the
baseline is 73.14% and 94.29% in Toyota-Smarthome and NTUG0, respec-

tively.

4.8.1. Comparison with baseline.

First, we test the baseline plus semantic information in the form of a
human pose estimation task, see baseline+HM(P) in Table 2. On average,
it increases the accuracy of all actions by 2.87 and 0.18 points in Toyota-
Smarthome and NTUG60, respectively. Pose information provides a significant
improvement in the accuracy of some actions. A small drawback is the
increased computational cost of 5% more GFLOPS, due to the extra tokens
that need to be processed for the human pose estimation.

We also compare different methods of token selection from the state-of-
the-art on the baseline model while maintaining similar GFLOPS for each

experiment. We test Top-K pruning by attention to the class token [12],
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Toyota-SM | NTU60

Method mCA. Acc. |GFlops

W | w | W
VideoMAEv2-base (baseline)| 73.14 94.29 | 360
+PR(C) 73.30 93.45 | 232
+PR(MF) 70.77 94.09 | 232
+PR(C)+MG 73.89 94.10 | 232
+HM(P) 76.01 94.47 | 379
+HM(P)+PR(C) 74.94 93.93 | 249
+HM(P)+PR(C+P) 75.41 94.57 | 249
+HM(P)+ToMe 73.80 88.35 190
+HM(P)+PR(C+P)+ToMe | 74.65 | 93.84 | 249
+HM(P)4+PR(C+P)+MG 76.98 | 94.84 | 249

Table 2: Ablation study. Test results on Toyota-Smarthome (CS) and NTU60 (CS) using
different model configurations. VideoMAEv2-base is the baseline experiment and the rest

are independent experiments adding something to baseline.
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baseline+PR(C), pruning by attention to the middle frame visual tokens [9],
baseline+PR(MF), and adding our token merging solution to the class token
pruning, baseline+PR(C)+MG. We find that for all configurations there is
a loss in accuracy when compared to the baseline. In Toyota-Smarthome,
utilizing PR(MF), similar to the method in EVAD [9], resulted in a larger loss
in accuracy than with PR(C), -2.37% vs 40.16%. This means that the visual
tokens in the middle frame are not as informative compared to relying only on
the class token for token selection. The use of PR(C)+MG resulted in a small
performance gain of 0.75% in Toyota-Smarthome while in NTU60 we obtain
a small reduction of 0.19%. This suggests that merging tokens is beneficial
in preserving valuable information that pruning alone may not capture. This
is crucial for maintaining model accuracy while increasing computational
efficiency. Note here that token pruning reduces GFLOPs by 35% (360 to
232) and merging does not add a significant amount of processing.

The last set of experiments in Table 2 assesses the influence of dif-
ferent token selection methods in the multi-task model, baseline+HM(P).
The first interesting result is that pruning guided by the class token, base-
line+HM(P)+PR(C), affects the performance of the model, 1.07% and 0.54%
less accuracy than baseline+HM(P) for both Toyota-Smarthome and NTUGO.
However, we found that our token pruning guided by class and pose to-
kens, baseline+HM(P)-+PR(C+P), outperforms pruning based solely on class
information, baseline+HM(P)+PR(C), by 0.47% and 0.64%. In addition,
employing the entire PO-GUISE model (baseline+HM(P)+PR(C+P)+MG)
yields an additional improvement of 2.04% and 0.91% over PR(C). We per-

form additional experiments to compare with the ToMe merging method [13].
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Figure 6: Per-class accuracy comparison on Toyota-Smarthome (CS). We show results for
the baseline model (VideoMAEv2-base), Top-K pruning (PR(C)), and PO-GUISE. We

have merged some classes for an easier visualization.

The combination of baseline+HM(P)+PR(C+P)+ToMe shows a reduction
of 2.33% in accuracy compared to PO-GUISE with our token merging pro-
cedure. Lastly, PO-GUISE model achieves a reduction in GFLOPS around
34% while also increasing the accuracy by 0.97% and 0.37% over the base-
line+HM(P). These results highlight the effectiveness of pose-guided prun-
ing and the merging process in efficiently selecting task-relevant tokens. In
Fig. 6 we show the per-class-accuracy of our method against the baseline
model and the Top-K (PR(C)) pruning technique. PO-GUISE obtains an
improvement across virtually all classes. The improvement is most notable
in classes that require the recognition of fine-grained actions, such as ”Use
telephone,” ”Cut bread,” and ”Make tea,” where our method significantly

outperforms the baseline.
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Toyota-SM | GFlops
Method
mCA. (1) ()
VideoMAEv2-base 73.14 360
+PO-GUISE 76.98 249
Internvideo2 75.64 509
+PO-GUISE 77.03 399

Table 3: Test results on Toyota-Smarthome (CS) with RGB-only modality at inference.

To demonstrate the flexibility of PO-GUISE and its ability to be inte-
grated into other ViT-based backbones, we have performed an additional
experiment using InternVideo2-B/14 [18], see Table 3. It increases the accu-
racy of VideoMAE by 2.5%, but with 41% more GFLOPS. With this model,
the behavior of PO-GUISE is similar. It reduces the number of GFLOPS by
a remarkable 27% while increasing the accuracy by 1.5%. In the rest of the
paper we use VideoMAEv2-base as the backbone.

4.3.2. Efficiency analysis.

In this experiment we explore the trade-off between accuracy and com-
putational cost incurred by different token selection methods applied on
the multi-task model, baseline+HM(P). In Fig. 7 we show the curves of
GFLOPS vs. accuracy obtained by training with different values of p and
A. For the experiments +HM(P)+PR(C+P) and +HM(P)+PR(P) p €
{0.3,0.4,0.55,0.7}. For the +HM(P)+PR(C+P)+MG experiments, p €
{0.3,0.4,0.45,0.6} and X € {0.1,0.2,0.2,0.3}.

The curve associated with PO-GUISE (baseline+HM(P)+PR(C+P)+MG)

is always on top for different proportions of selected tokens (p). Interestingly,
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at 166 GFlops our accuracy is still 94.50%, on top of previous methods.
The difference with the same pruning method but without token merging
(PR(C+P)) is significant, while not using pose tokens in pruning reduces
even more the performance in all values of p.

We have also conducted experiments on a Jetson Orin NX (16GB) to eval-
uate performance in a resource-limited device. The baseline model Video-
MAEv2 processes one sample every 1140 ms with 3608 MB memory usage.
This further increases to 1290 ms, and 4125 MB when incorporating human
pose estimation. PO-GUISE at 249 GFLOPS reduces these to 640 ms and
2973 MB, effectively decreasing by 50% and 27% the computational time and
cost. This gain in performance is especially important in the Jetson archi-
tecture, where the GPU and CPU share the same unified memory, meaning
that a lower model memory requirement leaves more space for other sec-
ondary CPU tasks. Our memory usage, 2973 MB, also makes it feasible to

implement it on the lower-end Jetson models with 4 GB of memory.

4.83.8. Visualizations.

In this section we show some qualitative results at low token keep rates of
our improved token selection method PO-GUISE against the top performer
token pruning technique [12], Top-K, and the baseline VideoMAEv2-base
model. For a fair comparison, we have configured both models to have a
similar number of visual tokens and GFLOPS. Specifically, PO-GUISE uses
the keep rates p = 0.1, A = 0.1 and the Top-K model uses p = 0.2. In
Fig. 8 we show some examples, each square represents a visual token and its
normalized attention to class token. If a visual token was selected more than

once in time, its attention is aggregated. For ease of comparison, we have
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used the same color map as in Fig. 1. We can see that PO-GUISE effectively
selects the tokens related to the person, while Top-K and the Baseline tend
to select irrelevant tokens. We believe this is a side-effect from training ViTs.
At inference, these use low-informative background areas of images as a form
of repurposed internal computation [48].

The human pose detection task is well learned by the PO-GUISE as shown
in Figs. 9 and 10. Note that we are learning one motion heatmap per body
joint which consists of the sum of probability maps from the 16 frames of
the clip. For ease of visualization, we show in the same image the motion

heatmaps corresponding to all body joints.

4.8.4. Discussion.

Our contribution is a token selection procedure guided by human motion
that, at default settings, not only maintains, but improves the accuracy of
a top-performing video transformer. Unlike previous methods, our approach
results in a reduction of 30% in GFLOPs. However, since we guide the
attention of the transformer towards areas with human motion, it also results

in a final increase of the accuracy.

4.4. Comparison with the state-of-the-art

We compare PO-GUISE with state-of-the-art techniques in different ADL
recognition datasets: NTU60, NTU120 (Table 5), and Toyota-Smarthome
(Table 4).

Our method achieves new state-of-the-art results on the Toyota-SmartHome
dataset (Table 4), surpassing the previous state-of-the-art, =-ViT [10], by
4.07%, 3.77%, and 11.32% across all protocols, respectively. The lower per-
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liwui

(a) Baseline (b) Top-K Pruning (c) PO-GUISE

Figure 8: Visual Token Attention and Selection. Brighter colors indicate higher attention
from the selected visual tokens to the class token. For Top-K Pruning and PO-GUISE,
we show the attention from the selected tokens at the last stage. For the baseline, the

attention maps are obtained from the last layer.
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Figure 9: Sample heatmaps from the NTU120 (CS) dataset test set using PO-GUISE. The
first column corresponds to the middle frame of the video clip, the second column displays
the temporal heatmaps used as training labels, and the third column shows the predicted

heatmaps.
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Figure 10: Sample heatmaps from the Toyota-SmartHome (CS) dataset test set using PO-

GUISE. The first column corresponds to the middle frame of the video clip, the second
column displays the temporal heatmaps used as training labels, and the third column

shows the predicted heatmaps.
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Method CS CV1 CV2 | GFlops
mCA. (1) [mCA. (1)|mCA. ()] (1)
AssembleNet++[49]|  63.6 - - -
MotionFormer[50] 65.8 45.2 51.0 369
LTN[51] 65.9 - 54.6 -
TimeSFormer [52] 68.4 50.0 60.6 784
VPN++ 1] 69.0 - 54.9 -
Video Swin [34] 69.8 36.6 486 | 281
7-ViT [10] 72.9 55.2 64.8 | 785
VideoMAEv2-base 73.14 55.20 67.68 360
+ HM(P) 7601 | 57.31 | 7182 | 379
PO-GUISE 76.98 58.98 76.12 249

Table 4: Test results on Toyota-Smarthome over the CS, CV1 and CV2 protocols.

NTU60 NTU120
Method CS Cv CS CSet | GFlops
Acc. (1)|Acc. (1)|Ace. (1)|Ace. ()| ()
VideoCon [53] 914 | 980 | 856 | 875 ;
ViewCLR [54] 80.7 | 941 | 862 | 845 -
VPN++ [1] 93.5 99.1 86.7 89.3 -

MotionFormer[50] | 85.7 91.6 87.0 87.9 369
TimeSFormer [52] | 93.0 97.2 90.6 91.6 784

Video Swin [34] 934 | 96.6 | 914 | 921 | 281
7-ViT [10] 94.0 | 979 | 919 | 92.9 | 785
VideoMAEv2-base| 94.20 | 90.91 | 91.73 | 89.64 | 360
+ HM(P) 9447 | 91.27 | 93.36 | 91.02 | 379
PO-GUISE 94.84 | 92.31 | 93.47 | 92.11 | 249

Table 5: Test results on NTU datasets with RGB-only modality at inference.
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formance observed in the CV1 protocol, compared to other protocols, is
consistent with previous work due to the limited training data available for
this challenging single-camera setting.

In the NTU datasets (Table 5), we also surpass state-of-the-art perfor-
mance on all cross-subject benchmarks compared to methods utilizing only
RGB input. PO-GUISE outperforms the prior results of 7-ViT [10] by 0.84%,
and 1.57% on each dataset’s cross-subject protocol (CS), respectively. Im-
portantly, we achieve these performance gains while simultaneously reducing
the computational cost of 7-ViT by 536 GFLOPS.

The difference in performance observed between the Toyota-SmartHome
and NTU datasets for cross-view protocols reflects the difference in diffi-
culty between these benchmarks. In Toyota-SmartHome, the test cameras
maintain a similar viewpoint to the training cameras, mostly changing the
room the subject is present in. The NTU datasets, and NTU 60 in partic-
ular, present a significantly more challenging cross-view scenario, where the
cameras used during testing are placed quite differently compared to those
utilized for training. However, the difference in size between these datasets
explains the better accuracy in NTU. Previous methods have attempted to
address this challenge by incorporating 3D pose information during training,
7 -ViT [10] and VPN++ [1]. Overall, these results highlight the effectiveness
of PO-GUISE in cross-subject protocols, with the use of 3D pose information

as a promising avenue for future work focused on cross-view protocols.
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5. Conclusions

State-of-the-art video transformers for action recognition operate with a
quadratic complexity regarding the number of input tokens, which presents a
significant computational challenge. Although token pruning offers a promis-
ing approach to reduce this computational burden, existing methods often
lead to a decrease in action recognition accuracy.

Our method addresses this limitation by leveraging human motion infor-
mation to selectively retain the most informative tokens for action recogni-
tion. This approach achieves a compelling balance between accuracy and
computational efficiency. Specifically in default settings, our method reduces
the number of visual tokens, resulting in a 30% reduction in GFLOPS while
simultaneously increasing accuracy by up to 8%.

Although our method demonstrates notable success on all cross-subject
benchmarks, further research is needed to enhance computational efficiency
and accuracy on more challenging cross-view action recognition tasks. Our
future work will explore the integration of additional semantic tasks to further
improve token selection, as well as the incorporation of 3D pose information
during training.

The models and code required to reproduce the experiments described in

this paper will be made publicly available upon publication.
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