

Pose-guided token selection for the recognition of activities of daily living

Ricardo Pizarro^a, Roberto Valle^b, José M. Buenaposada^c, Luis M. Bergasa^a, Luis Baumela^b

^a*Departamento de Electrónica, Universidad de Alcalá, Alcalá de Henares, Spain*

^b*Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Madrid, Spain*

^c*Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Móstoles, Spain*

Abstract

Large pre-trained video transformers are becoming the standard architecture for video processing due to their exceptional accuracy. However, their quadratic computational complexity has been a major obstacle to their practical application in problems that require the recognition of precise motion patterns in video, such as in the recognition of Activities of Daily Living (ADL). Techniques like token pruning help mitigate their computational cost, but overlook some specific aspects of this task such as the actor movement. To address this we propose an improved token selection method that integrates semantic information from the ADL recognition task with that of human motion. Our model relies on a multi-task architecture that infers human pose and activity classification from RGB images. We show that guiding token pruning with motion information significantly improves the trade-off between higher efficiency, obtained by reducing the number of tokens, and accuracy of the classification task. We evaluate our model on three popular ADL recognition benchmarks with their respective cross-subject and

cross-view setups. In our experiments, a video transformer modified with our proposed modules sets a new state-of-the-art on the ADL recognition task whilst achieving significant reductions in computational cost.

Keywords: activities of daily living recognition, efficiency in transformers, token selection, motion heatmaps

1. Introduction

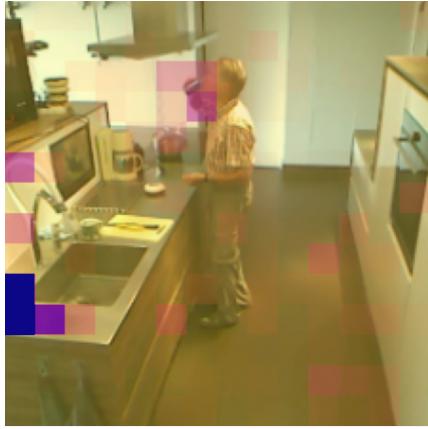
Activities of Daily Living (ADL) encompass the fundamental tasks of daily life, such as eating, cooking, and managing medications. They play a crucial role in assessing a person’s ability to function independently. Their recognition is used to monitor the elderly or people with disabilities and to evaluate their functional ability in conditions such as dementia, stroke, or aging. The models and techniques of computer vision used to recognize them share similarities with the broader field of human action recognition. However, ADLs present specific challenges, such as the existence of short and subtle actions that exhibit a similar visual appearance but differ in motion [1]. This requires the precise analysis of human body motion patterns within videos’ spatio-temporal context.

In the recognition of human actions we have seen a transition from methods using CNNs [2, 3, 4] and 3D-CNNs [5, 6, 7] or a mixture of both [4] to transformers [8, 9, 10]. Using self-supervised learning techniques and the use of large-scale datasets, recent video transformer models achieve the highest accuracy on the human action recognition problem [11]. A key limitation in using these models to analyze video is their quadratic complexity, which increases the computational demands as the number of spatio-temporal tokens

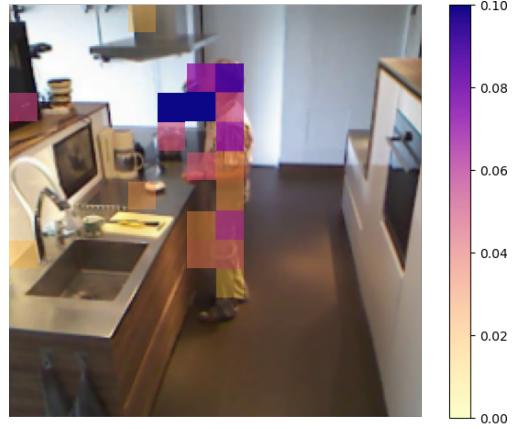
20 grows. Although progress has been made in this area, there is still consid-
21 erable room for improvement, especially for recognizing subtle motions and
22 when the trade-off between accuracy and efficiency is of practical relevance.
23 Both are crucial ingredients in making the recognition of ADL a household
24 product. Applications such as falling detection or ensuring that medication
25 is taken correctly demand real-time performance, making computationally
26 expensive models impractical.

27 One technique to achieve a better trade-off between accuracy and ef-
28 ficiency is token selection, where a percentage of tokens are discarded at
29 certain blocks within the transformer model, reducing the total number of
30 tokens in the model. Popular techniques include Top-K [12], where token
31 selection is guided by keeping the K tokens with the greatest attention to
32 the class token, merging similar tokens [13], or a mixture of both [14, 15, 16].
33 However, these techniques often lack consideration for factors such as human
34 pose and its temporal dynamics. This can lead to suboptimal performance
35 in ADL scenarios that require a nuanced understanding of human actions,
36 resulting in a potential loss of critical information.

37 In this paper, we present a token selection method for transformer models
38 that integrates semantic information from both the activity recognition task
39 and human motion. We aim to improve the attention of the transformer on
40 the actor’s motion and, at the same time, reduce computational requirements
41 of the model. Our module can be integrated on ViT-based architectures such
42 as InternVideo2 [18] and VideoMAEv2 [11]. These transformer architectures
43 are pre-trained with a self-supervised strategy and refined with a large human
44 action database. Our method, called PO-GUISE, is trained in a multi-task



(a) Baseline ViT model



(b) PO-GUISE ($\rho = 0.1, \lambda = 0.1$)

Figure 1: Attention maps for the "Drink.Frombottle" action on Toyota-Smarthome (CS) [17]. Colored rectangles represent the attention weight assigned by each visual token to the classification token, lighter yellow rectangles indicating a low attention from that token. PO-GUISE concentrates attention on task-relevant regions, improving computational efficiency by discarding irrelevant tokens.

45 fashion using RGB videos. They are converted into spatiotemporal visual
46 tokens and are processed alongside heatmap tokens representing temporal
47 representations of human poses. We have extended the traditional heatmap
48 to predict the motion of the keypoints of multiple actors in video. Our token
49 selection method prunes spatiotemporal visual tokens, referred to as *visual*
50 *tokens*, that do not pay enough attention to semantic tokens, those relevant
51 to human motion and action recognition. To ensure that information is
52 not lost during pruning, our merging method summarizes the pruned tokens
53 by averaging similar dropped tokens. Fig. 1 shows that our method selects
54 tokens primarily on the actor, while the baseline model focuses on potentially
55 irrelevant parts of the scene. To our knowledge, we are the first to improve
56 the accuracy of transformer models for ADL recognition while reducing its
57 computational cost using human pose and motion information. Moreover,
58 our approach does not require an external keypoint detection model. In
59 summary, we pioneer the introduction of human motion information into the
60 token selection process in the video transformer architecture.

61 The contributions of our work are as follows.

- 62 • A token selection method guided by human motion and class informa-
63 tion tailored to the recognition of activities of daily living. Focuses the
64 attention of the model on the motion of the actor and improves the
65 trade-off between efficiency and accuracy compared to other methods
66 from the state-of-the-art, even at very low token keep rates.
- 67 • A representation of human motion based on a feature map shared by
68 all body keypoint temporal heatmaps, that is agnostic of the number
69 of people in the scene and allows our method to be used on multi-actor

70 datasets.

- 71 • Our method sets a new state-of-the-art in various activities of daily
72 living RGB video benchmarks, while being much more efficient than
73 other top performing methods based on video transformers.

74 **2. Related work**

75 In this section, we review the human action recognition and activities
76 of daily living literature. Recognizing actions in videos requires considering
77 variations in the location and poses of actors within the scene, as well as
78 their movement.

79 **Human Action Recognition and ADL.** One way to analyze motion in
80 videos is to compute convolutions in both the image and the time dimensions
81 with 3D CNNs [5]. A popular approach is the two-stream CNN [2, 3, 4] that
82 uses both RGB and optical flow maps. However, optical flow only gives
83 short temporal scale information. More recent work use a Recurrent Neural
84 Network (RNN) [19] on top of a two-stream network [3] to process a longer
85 but still limited temporal context. The adoption of video transformers in
86 action recognition allows for a holistic temporal context to be established [8,
87 9, 10], although with quadratic complexity in the number of visual tokens.

88 The human pose and its realization in the form of probability maps, or
89 heatmaps, corresponding to the location of body keypoints has proven to be
90 very discriminative in action recognition [20, 21, 22, 23, 24, 25, 26, 27]. Many
91 previous studies have used an external human pose estimation model [22,
92 21, 23, 28, 29, 30, 31]. This is also the case with recent transformer based
93 methods [25, 26, 27]. Having an external pose estimation model not only

94 increases the computational cost but also decreases the system robustness in
95 situations where the external model fails. Few methods adopt a multi-task
96 strategy to estimate pose and recognize actions in the same model [19, 32]. A
97 recent approach achieves top performance in the recognition of activities of
98 daily living by combining 2D and 3D human pose [10]. In our solution we also
99 adopt a multi-task strategy. However, unlike these approaches, we use human
100 pose to select the most informative video tokens by guiding the model’s
101 attention to human motion, while reducing the computational requirements
102 of the model.

103 **Computational requirements of Video Transformers.** The quadratic
104 complexity in the number of tokens in a transformer is a fundamental limi-
105 tation for its use in real-time video analysis. This problem can be addressed
106 in different ways. Some methods modify the attention mechanism itself to
107 reduce this quadratic complexity. For example, one approach is to factor-
108 ize attention along the spatial and temporal dimensions [33]. Another is to
109 restrict attention to small local windows and shift these windows hierarchi-
110 cally [34].

111 Another approach is token selection, in which a dedicated mechanism
112 prunes or merges the visual tokens processed by the network, discarding
113 those considered irrelevant to the task. This is achieved while preserving the
114 integrity of the transformer’s weights and underlying architecture.

115 Token selection methods can be categorized into pruning or merging
116 strategies. Token pruning methods focus on identifying and removing less
117 informative tokens. EViT [14], which uses a Top-K approach, selects the K
118 tokens with the highest attention to the class token, where the non-selected

119 tokens are fused into one token. PPT [35], introduces a learnable token per
120 body keypoint and uses their attention values to prune visual tokens. The
121 main limitation of PPT is the fixed number of keypoint tokens used in train-
122 ing, which limits the number of actors in the scene. EVAD [9], leverages
123 attention to visual tokens on a key-frame to determine which tokens to re-
124 tain. The TPS (Token Pruning and Squeezing) module [15], is a module for
125 image transformers. It uses a Top-K token pruning step and a squeeze step
126 that merges the non-selected tokens into the selected ones via matching and
127 similarity-based fusing. Another form of guiding pruning from image infor-
128 mation is based on patches, where inter-patch attention and dynamic pruning
129 are applied to take advantage of the rich structure of the patch relations [36].

130 Token merging techniques combine similar tokens to reduce redundancy,
131 such as ToMe [13], which merges similar tokens, as dictated by their cosine
132 similarity, into new ones. DTMFormer [37], which adaptively clusters tokens
133 into fewer semantic tokens via an attention-guided mechanism. Another
134 technique is a partitioned token fusion and pruning strategy. It discards
135 low-correlation background token information and fuses medium-correlation
136 token. This technique has been applied to the field of object tracking [16].

137 Haurum et al. [12] provides a systematic comparison of ten popular token
138 reduction methods, finding that pruning-based methods such as Top-K and
139 EViT [14] consistently perform best.

140 However, a significant limitation of existing token selection methods is
141 their lack of task-specific considerations. Specifically for the ADL task, these
142 methods do not account for the human pose and its temporal dynamics
143 directly, potentially resulting in the loss of crucial information.

144 **Our proposal.** We present a novel token selection method guided by
145 both temporal human pose heatmaps and ADL. We use a multi-task strat-
146 egy, estimating both human motion heatmaps and activity, which differs
147 from the usual and less efficient approach using externally provided land-
148 marks [25, 26, 27]. Also, and differently to π -Vit [10], our approach uses
149 the estimated motion to reduce the number of spatio-temporal tokens. This
150 strategy focuses the attention of the model on the actor’s movements and
151 reduces the computational complexity of the transformer. As a result, it
152 maintains or even enhances the accuracy of the baseline model. In addition,
153 its accuracy decreases much more slowly than that of other token selection
154 methods at very low computational budgets. Compared with the baseline
155 model, PO-GUISE in default settings reduces computation by a remarkable
156 30% and improves the accuracy by 0.55%, 1.74% and 3.84% in the NTU60,
157 NTU120 and Toyota-Smarthome datasets, respectively, in the cross-subject
158 protocol (see Tables 5 and 4).

159 **3. POse-GUIded multi-task video transformer with token SElec-
160 tion (PO-GUISE)**

161 Our approach incorporates a pre-trained video transformer [11, 18] as its
162 encoding mechanism. The video transformer is fine-tuned in different ac-
163 tion recognition datasets. To facilitate human body keypoints localization
164 and guide our token selection, we have integrated the pose heatmaps predic-
165 tion and action classification tasks. Additionally, to mitigate the computa-
166 tional demands associated with video transformer models, we introduce the
167 PO-GUISE module, which effectively reduces the number of visual tokens.

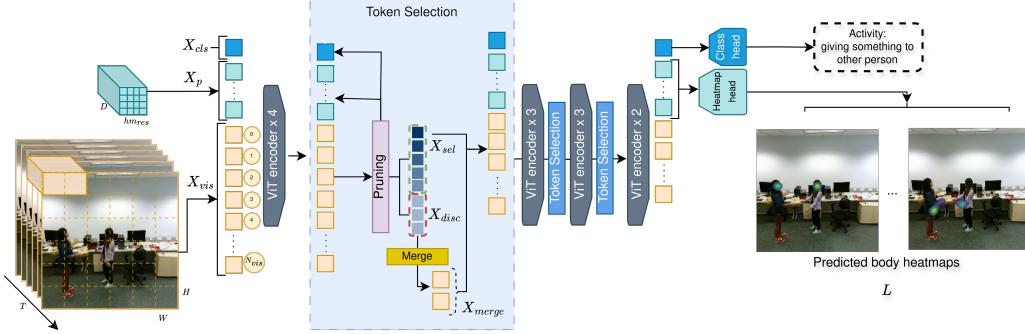


Figure 2: Our architecture consists of 4 stages. An input clip is tokenized and processed by a ViT encoder alongside learnable class and heatmap tokens. Our token selection module is inserted in the first three stages of the ViT encoder, reducing the number of tokens after each stage. The model outputs both the activity classification and the corresponding motion heatmaps.

168 A comprehensive visual representation of our model is given in Fig. 2. In
 169 the following sections, we provide a detailed explanation of each component
 170 within our model.

171 *3.1. Video Transformer and human-pose processing*

172 Consider a video segment, or clip, with dimensions $T \times C \times H \times W$
 173 where T is the number of frames and C, H, W are the channels, height, and
 174 width of each frame, respectively. In our experiments, we define $T = 16$,
 175 $C = 3$, $H = 224$ and $W = 224$ respectively. To process a clip with a video
 176 transformer [11], we use the joint space-time cube embedding [33]. This
 177 technique samples non-overlapping cubes from the input video clip, which
 178 are then fed into the embedding layer. It divides the input video tensor into
 179 cubes of dimension $2 \times C \times 16 \times 16$, resulting in a set of $N_{vis} = t \cdot h \cdot w$
 180 visual tokens, where $t = \frac{T}{2}$, $h = \frac{H}{16}$, $w = \frac{W}{16}$. We then project tokens to D

181 dimensions using a linear embedding layer, resulting in an input tensor with
182 shape $X_{vis} \in \mathbb{R}^{N_{vis} \times D}$. Next, we apply a positional embedding to each token,
183 and a learnable class token, $X_{cls} \in \mathbb{R}^{1 \times D}$, is concatenated to the sequence.
184 For the computation of human-pose heatmaps, our model incorporates $N_p =$
185 $hm_{res} \cdot hm_{res}$ learnable tokens into the input sequence defined as $X_p \in \mathbb{R}^{N_p \times D}$,
186 where hm_{res} defines the heatmap feature map resolution and total number
187 of tokens it is represented by. The complete sequence of tokens, including
188 the class, pose and visual tokens $X = (X_{cls}, X_p, X_{vis}) \in \mathbb{R}^{N \times D}$ where $N =$
189 $1 + N_p + N_{vis}$, is then processed using a standard ViT architecture. The
190 transformed class token X_{cls} is used in a multilayer perceptron (MLP) for the
191 classification task, while the X_p pose tokens are passed through a heatmaps
192 estimation head to be compared against the ground truth heatmaps for pose
193 estimation (one heatmap per human body keypoint).

194 *3.2. Human-pose estimation task*

195 A crucial part of our approach involves the use of temporal heatmaps,
196 which enhance the training process and facilitate token selection. These
197 heatmaps are derived from learnable tokens, similar to those in PPT [35].
198 However, our method further refines PPT’s image-only processing by extend-
199 ing its capabilities to handle a variable number of keypoints, video inputs,
200 and multi-person heatmap predictions.

201 Heatmap prediction starts with the introduction of additional tokens to
202 the network, X_p . After passing through the encoder, these tokens are pro-
203 cessed by a lightweight decoder (Heatmap head) to convert the tokens into
204 heatmaps. The architecture of the Heatmap head consists of two deconvolu-
205 tion layers followed by a convolution layer with a 1×1 kernel and with

Figure 3: Motion heatmap generation. We aggregate the movement of the keypoints through time into a single heatmap. The figure shows, from left to right, the same keypoint at three different points in time and the corresponding aggregated heatmap.

206 output channels equal to the number of landmarks L [38]. The output of
207 this decoder is then directly compared with the ground truth heatmaps by
208 measuring the mean-squared error.

209 While these tokens are inherently capable of predicting heatmaps for an
210 individual frame within a video clip, we can adapt them to capture the en-
211 tire sequence of movements by modifying the ground truth labels. The use
212 of heatmaps instead of coordinate representations provides greater flexibility
213 by allowing the incorporation of additional information directly within the
214 heatmaps, without requiring any structural changes to the network architec-
215 ture. We generate time-aware heatmaps by averaging the spatial heatmaps
216 from the ground-truth labels, a Gaussian centered at the location of each an-
217 notated landmark, across the whole video clip. It results in a ground truth
218 heatmap where each keypoint movement within the clip is visible. Likewise,
219 the framework can be extended to predict multi-person heatmaps by com-
220 bining detection data from multiple individuals inside a single heatmap. In
221 Fig. 3 we show an example motion heatmap for the multi-actor case.

222 3.3. *POse-GUIDed token SElection module*

223 The use of joint space-time cube embeddings for processing videos is com-
224 putationally expensive, which is not ideal for use in environments with lim-
225 ited computing power. Videos naturally contain repetitive information over
226 time and areas with no information for action recognition. Thus, we propose
227 the use of token pruning to reduce computation without losing important
228 content.

229 We introduce a novel approach named PO-GUISE. This method lever-
230 ages the informative content of the class and heatmap tokens to improve
231 the token selection process. Furthermore, to prevent the loss of potentially
232 valuable information, PO-GUISE also merges some of the tokens that were
233 not initially selected during the pruning step. This merging step is crucial
234 as it compensates for any potentially relevant data that might not have been
235 identified by the pruning algorithm. Fig. 2 shows an overview of this two-step
236 token selection.

237 We integrate our token selection module into the transformer network
238 architecture at specific intervals. The ViT base architecture consists of 12
239 layers, we divide these in 4 stages, where each stage consists of 4,3,3,2 lay-
240 ers, respectively. We place the module at the output of each of the first
241 three stages. This results in a total of three token selection layers within a
242 ViT-base model (see Fig. 2). In doing so, our goal is to strike a balance be-
243 tween reducing computational load and maintaining the critical information
244 necessary to efficiently process the video.

245 *3.3.1. Token pruning.*

246 Building upon existing token pruning methods like EVIT [14] and EVAD [9],
 247 our approach introduces a novel integration of spatial information. Specif-
 248 ically, we leverage heatmap tokens to guide attention towards visual to-
 249 kens that correspond to actor locations. Let $\mathcal{A}_M \in \mathbb{R}^{M \times N_{vis} \times (1+N_p)}$ be
 250 the attention tensor from M heads, obtained from processing the tokens
 251 in $X \in \mathbb{R}^{N \times D}$, and then indexing by the attention the visual tokens (X_{vis})
 252 give to the heatmap (X_p) and class (X_{cls}) tokens. We average across at-
 253 tention heads to condense it into an $N_{vis} \times (1 + N_p)$ matrix, resulting in
 254 $\mathcal{A}_{vis} \in \mathbb{R}^{N_{vis} \times (1+N_p)}$, see Fig. 4. We then multiply by a small constant factor
 255 κ , the class attention scores and by $1 - \kappa$, the heatmap token attention scores
 256 to denote the relative importance between them. Next, by summing the rows
 257 of \mathcal{A}_{vis} , we get a vector of token scores, $\mathcal{T} \in \mathbb{R}^{N_{vis}}$. Each element in this
 258 tensor reflects the aggregated importance of a visual token influenced by the
 259 attention to the semantic tokens, (X_{cls} , X_p). The final pruning decision is
 260 based on these aggregated scores, allowing us to retain visual tokens that are
 261 deemed most significant in the context of both global class information and
 262 local spatial heatmap cues. The computed attention score for the i -th visual
 263 token can also be formulated as:

$$\mathcal{T}(i) = \mathcal{A}_{vis}(i, 0) \cdot \kappa + \left(\sum_{j=1}^{N_p} \mathcal{A}_{vis}(i, j) \right) \cdot (1 - \kappa),$$

264 where $\mathcal{A}_{vis}(i, j)$ is the attention score from i -th visual token to j -th semantic
 265 token, and κ is a constant factor to balance the importance between class
 266 and heatmap tokens.

267 We use \mathcal{T} to select the N_{sel} most significant tokens, based on their calcu-

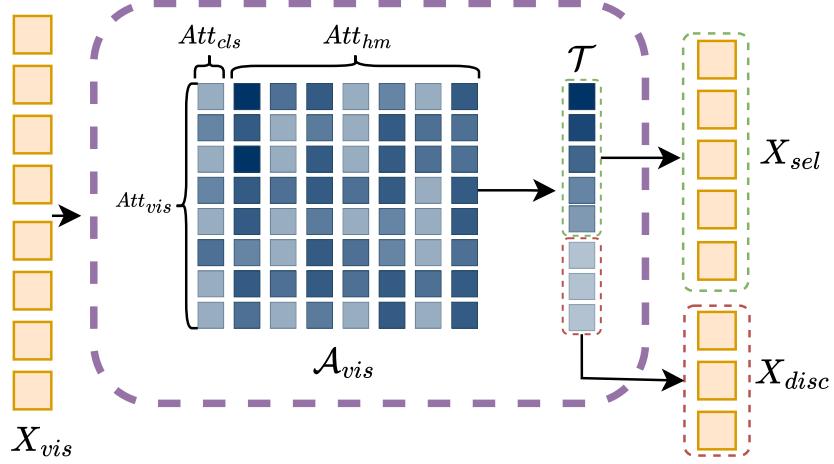


Figure 4: Token pruning diagram. The attention obtained from X_{vis} guides the token pruning. Each row in \mathcal{A}_{vis} corresponds to the attention a visual token (Att_{vis}) gives to the class (Att_{cls}) and heatmap (Att_{hm}) tokens. The Top-K tokens with most attention (\mathcal{T}) are selected as output of the step, while the non-selected go through a merging step.

268 lated scores. The number of selected tokens is determined by $N_{sel} = N_{vis} \cdot \rho$,
 269 where the keep rate ρ is a predefined threshold in the range $(0, 1]$. Result-
 270 ing in a set of selected tokens, $X_{sel} \in \mathbb{R}^{N_{sel} \times D}$, and a set of discarded ones,
 271 $X_{disc} \in \mathbb{R}^{(N_{vis} - N_{sel}) \times D}$. X_{sel} which will be processed in the next network
 272 block. Fig. 4 illustrates an overview of the pruning step.

273 *3.3.2. Token merging.*

274 The process of token pruning might exclude information that is important
 275 for later processing stages, or information that is not immediately apparent
 276 from examining the attention between classes and the associated heatmaps.
 277 To mitigate this, we introduce a token merging phase for the discarded tokens,

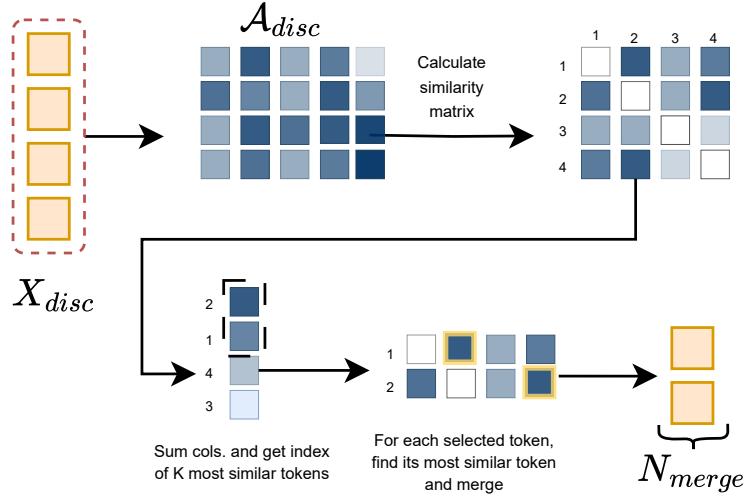


Figure 5: Token merging diagram. The discarded tokens from the previous pruning step are merged by their similarity. The similarity between tokens is measured by their attention to each other (A_{disc}). The N_{merge} most similar tokens are selected and then merged with their corresponding most similar token.

278 X_{disc} . This phase employs cosine similarity to identify and merge tokens
 279 with highly aligned features. Our approach adapts the merging strategy of
 280 ToMe [13] by implementing an alternative matching algorithm that is better
 281 suited to our context. Unlike ToMe, which initially partitions tokens into
 282 two sets, our algorithm is more flexible, allowing the merging of an arbitrary
 283 number of tokens. The number of output tokens in this phase is controlled
 284 by $N_{merge} = N_{disc} \cdot \lambda$ with λ being a predefined threshold in the range $(0, 1]$.
 285 Fig. 5 shows an overview of the merging method.

286 This phase begins with the use of the attention tensor A_{disc} obtained from
287 X_{disc} . We then use A_{disc} to compute the pairwise cosine similarity for these
288 tokens, generating a similarity matrix $S \in \mathbb{R}^{N_{disc} \times N_{disc}}$. The diagonal ele-
289 ments of S are masked to prevent the tokens from merging with themselves.
290 Each row of S represents the similarity of a specific token to all other tokens
291 within A_{disc} .

292 Next, for each token in X_{disc} , we identify its merge candidate as the token
293 with the highest cosine similarity, according to the respective row in S . Sub-
294 sequently, we select the N_{merge} tokens that exhibit the strongest similarity to
295 their respective candidates. This selective aggregation ensures that the infor-
296 mation from tokens with substantial similarity is preserved. These selected
297 tokens are then merged with their corresponding candidates by averaging
298 their feature vectors, resulting in a new set of tokens, $X_{merge} \in \mathbb{R}^{N_{merge} \times D}$.
299 Finally, X_{merge} and X_{sel} are concatenated to be processed by the next net-
300 work block. This process ensures that potentially relevant information is not
301 lost and is passed on to subsequent layers. A detailed description of this
302 module can be found in Algorithm 1.

303 4. Experiments

304 In this section, we evaluate our multi-task video transformer. In all exper-
305 iments $HM(P)$ stands for spatio-temporal heatmaps computed for multiple-
306 person poses PR stands for the use of token pruning by: C using attention to
307 the class token; MF using attention to the middle frame visual tokens; or P
308 using attention to the tokens used to compute human motion heatmaps. MG
309 stands for our proposal to merge pruned tokens. PO-GUISE corresponds to

Algorithm 1 Token Merging

```
1:  $X \in \mathbb{R}^{N \times D}$ : Original feature tensor
2:  $F \in \mathbb{R}^{N' \times D}$ : Feature tensor of unselected tokens
3:  $k$ : Number of tokens to merge based on similarity
4:  $F_{merged} \in \mathbb{R}^{M \times D}$ : Merged feature tensor
5:  $S \in \mathbb{R}^{N' \times N'}$ : Similarity matrix
6: // Compute cosine similarity for discarded tokens
7: for  $i = 1$  to  $N'$  do
8:   for  $j = 1$  to  $N'$  do
9:      $S_{ij} \leftarrow \frac{F_i \cdot F_j}{\|F_i\| \|F_j\|}$                                  $\triangleright$  Cosine similarity
10:    end for
11:  end for
12:   $S \leftarrow S - \text{diag}(\text{diag}(S))$                                  $\triangleright$  Set diagonal to zero
13: // Identify merge candidates based on similarity
14: for  $i = 1$  to  $N$  do
15:    $merge\_candidate[i] \leftarrow \text{MAX}(S_{i,:})$ 
16: end for
17: // Select the top-k most similar tokens based on  $S$ 
18:  $merge\_candidate \leftarrow \text{sort}(merge\_candidate)[: k]$ 
19: // Merge source tokens with the selected ones by
20:  $F_{merged} \leftarrow \text{mean}(X[merge\_candidate], axis = 0)$ 
21: return  $F_{merged}$ 
```

310 adding $+HM(P)+PR(C+P)+MG$ to the baseline video transformer. Within
311 each experiment, the results of the model in the first, second and third posi-
312 tions are shown, respectively, in bold, underline or double underline.

313 *4.1. Datasets*

314 We use popular ADL recognition datasets for evaluation: NTU60 [5],
315 NTU120 [39], and Toyota-Smarthome [17]. We employ two standard evalua-
316 tion protocols established in the datasets, cross-subject (CS) and cross-view
317 (CV) or cross-set (CSet). In the CS protocol, the training and testing sets are
318 split according to the identity of the subject, ensuring that there is no overlap
319 between actors. In the CV or CSet protocol, different camera viewpoints are
320 used for training and testing, while all subjects are included in both sets. We
321 present the overall accuracy (*Acc.*) or the average-per-class accuracy (mean
322 class accuracy, *mCA*) when appropriate due to the class imbalance present
323 in some datasets.

324 NTU120 is a large-scale human action recognition data set for activities
325 of daily living. It features 114K videos, multiple camera views, 106 sub-
326 jects, and 120 different classes. We follow the cross-subject protocol (CS),
327 where train-test sets feature different subjects, and cross-setup (CSet) proto-
328 col which uses different camera setups in training and testing. The NTU60
329 dataset is a subset that contains only 57K videos, 40 subjects, and 60 classes.
330 We follow the CS and CV protocols. For both NTU datasets we report the
331 overall accuracy (*Acc.*).

332 Toyota-Smarthome is a dataset for activities of daily living performed by
333 seniors. The dataset consists of 16K RGB clips of 31 activity classes per-
334 formed by 18 subjects and 7 different camera viewpoints. We evaluate using

335 the cross-subject (CS) protocol with 31 classes. We also use two cross-view
336 protocols, CV1 and CV2, both of which use a 19-class subset and cameras
337 2 and 5 for testing and validation, respectively. For training, CV1 uses only
338 camera 1 while CV2 uses cameras 1, 3, 4, 6, and 7. We report the mean class
339 accuracy (mCA).

340 *4.2. Implementation details*

341 Unless otherwise stated, we use a ViT-base model with pre-trained weights
342 from VideoMAEv2 [11]. These have been distilled from the pre-trained ViT-
343 giant model *vit_b_k710_dl_from_giant*. For classification, we use cross-entropy
344 loss and log-scaled MSE for heatmap prediction. We also use Nash-MTL [40]
345 to balance both tasks. We set the heatmap resolution to $hm_{res} = 8$. We
346 use the AdamW [41] optimizer with a Cosine Annealing learning rate sched-
347 ule [42]. Data augmentation includes Cutmix [43] (CMx), Mixup [44] (MxU)
348 and RandAug [45]. For our PO-GUISE model, we set pruning keep rate to
349 $\rho = 0.6$ and merge keep rate to $\lambda = 0.3$ in all experiments unless otherwise
350 stated.

351 All of our experiments are done on an NVIDIA DGX server with 4 A100-
352 80GB GPUs. Training is done using Pytorch 2.3 [46], and a hyperparameter
353 search is done on the learning rates using Wandb [47] with a Bayesian search
354 on validation loss.

355 For both NTU120 and NTU60 we follow the official implementation, dis-
356 carding the examples where no pose was recorded. The detailed hyperparam-
357 eters used for the experiments in NTU60, NTU120, and Toyota-Smarthome
358 can be seen in Table 1.

359 At inference we crop the central part of the frame in NTU with full height,

Configuration	Toyota-SM	NTU/Toyota-SM
	(CV)	All/(CS)
Pre-trained weights	<i>vit-b-k710-dl-from-giant</i>	
MSE scaling factor	1000	
Learning rate backbone	0.00007	0.0001
Learning rate heads	0.0003	0.0006
Optimizer	Adamw	
Learning rate scheduler	Cosine Annealing	
RandAug. M	7	
RandAug. N	4	
label smoothing	0.1	
CMx & MxU prob.	1.0	
CMx & MxU switch prob.	0.5	
Gradient clipping	1.5	
accumulate_grad_batches	2	
Batch size	16	
Merge feat. sim. matrix	Attention	
Epochs	350	
Early Stopping	30	
#Landmarks	13	25/13
PO-GUISE ρ	0.6	
PO-GUISE λ	0.3	

Table 1: Training parameters used in the main paper experiments.

360 keeping the aspect ratio and resizing it to 224×224 pixels and each labeled
361 clip was sampled uniformly over time. With Toyota-Smarthome we use the
362 same cropping strategy as in NTU. We follow the official implementation and
363 temporally divide each labeled clip into 4-second samples (128 frames). We
364 reach the final classification by averaging the logits of the samples from each
365 clip.

366 *4.3. Ablation study*

367 For the ablation experiments (see Table 2), we use the Toyota-Smarthome
368 and NTU60 datasets following in both cases their cross-subject procedure.
369 Our baseline result is obtained by fine-tuning a state-of-the-art video trans-
370 former, VideoMAEv2 [11] pre-trained in Kinetics [4]. The accuracy for the
371 baseline is 73.14% and 94.29% in Toyota-Smarthome and NTU60, respec-
372 tively.

373 *4.3.1. Comparison with baseline.*

374 First, we test the baseline plus semantic information in the form of a
375 human pose estimation task, see baseline+HM(P) in Table 2. On average,
376 it increases the accuracy of all actions by 2.87 and 0.18 points in Toyota-
377 Smarthome and NTU60, respectively. Pose information provides a significant
378 improvement in the accuracy of some actions. A small drawback is the
379 increased computational cost of 5% more GFLOPS, due to the extra tokens
380 that need to be processed for the human pose estimation.

381 We also compare different methods of token selection from the state-of-
382 the-art on the baseline model while maintaining similar GFLOPS for each
383 experiment. We test Top-K pruning by attention to the class token [12],

Method	Toyota-SM	NTU60	GFlops
	mCA. (↑)	Acc. (↑)	
VideoMAEv2-base (baseline)	73.14	94.29	360
+PR(C)	73.30	93.45	232
+PR(MF)	70.77	94.09	232
+PR(C)+MG	73.89	94.10	232
+HM(P)	<u>76.01</u>	<u>94.47</u>	379
+HM(P)+PR(C)	74.94	93.93	249
+HM(P)+PR(C+P)	<u>75.41</u>	<u>94.57</u>	249
+HM(P)+ToMe	73.80	88.35	190
+HM(P)+PR(C+P)+ToMe	74.65	93.84	249
+HM(P)+PR(C+P)+MG	76.98	94.84	249

Table 2: Ablation study. Test results on Toyota-Smarthome (CS) and NTU60 (CS) using different model configurations. VideoMAEv2-base is the baseline experiment and the rest are independent experiments adding something to baseline.

384 baseline+PR(C), pruning by attention to the middle frame visual tokens [9],
385 baseline+PR(MF), and adding our token merging solution to the class token
386 pruning, baseline+PR(C)+MG. We find that for all configurations there is
387 a loss in accuracy when compared to the baseline. In Toyota-Smarthome,
388 utilizing PR(MF), similar to the method in EVAD [9], resulted in a larger loss
389 in accuracy than with PR(C), -2.37% vs +0.16%. This means that the visual
390 tokens in the middle frame are not as informative compared to relying only on
391 the class token for token selection. The use of PR(C)+MG resulted in a small
392 performance gain of 0.75% in Toyota-Smarthome while in NTU60 we obtain
393 a small reduction of 0.19%. This suggests that merging tokens is beneficial
394 in preserving valuable information that pruning alone may not capture. This
395 is crucial for maintaining model accuracy while increasing computational
396 efficiency. Note here that token pruning reduces GFLOPs by 35% (360 to
397 232) and merging does not add a significant amount of processing.

398 The last set of experiments in Table 2 assesses the influence of dif-
399 ferent token selection methods in the multi-task model, baseline+HM(P).
400 The first interesting result is that pruning guided by the class token, base-
401 line+HM(P)+PR(C), affects the performance of the model, 1.07% and 0.54%
402 less accuracy than baseline+HM(P) for both Toyota-Smarthome and NTU60.
403 However, we found that our token pruning guided by class and pose to-
404 kens, baseline+HM(P)+PR(C+P), outperforms pruning based solely on class
405 information, baseline+HM(P)+PR(C), by 0.47% and 0.64%. In addition,
406 employing the entire PO-GUISE model (baseline+HM(P)+PR(C+P)+MG)
407 yields an additional improvement of 2.04% and 0.91% over PR(C). We per-
408 form additional experiments to compare with the ToMe merging method [13].

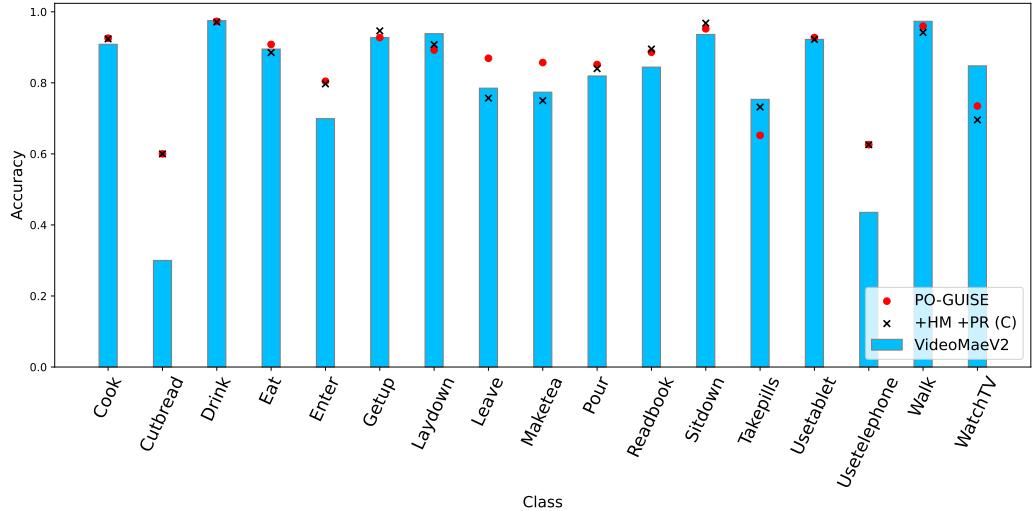


Figure 6: Per-class accuracy comparison on Toyota-Smarthome (CS). We show results for the baseline model (VideoMAEv2-base), Top-K pruning (PR(C)), and PO-GUISE. We have merged some classes for an easier visualization.

409 The combination of baseline+HM(P)+PR(C+P)+ToMe shows a reduction
 410 of 2.33% in accuracy compared to PO-GUISE with our token merging pro-
 411 cedure. Lastly, PO-GUISE model achieves a reduction in GFLOPS around
 412 34% while also increasing the accuracy by 0.97% and 0.37% over the base-
 413 line+HM(P). These results highlight the effectiveness of pose-guided prun-
 414 ing and the merging process in efficiently selecting task-relevant tokens. In
 415 Fig. 6 we show the per-class-accuracy of our method against the baseline
 416 model and the Top-K (PR(C)) pruning technique. PO-GUISE obtains an
 417 improvement across virtually all classes. The improvement is most notable
 418 in classes that require the recognition of fine-grained actions, such as "Use
 419 telephone," "Cut bread," and "Make tea," where our method significantly
 420 outperforms the baseline.

Method	Toyota-SM mCA. (\uparrow)	GFlops (\downarrow)
VideoMAEv2-base	73.14	<u>360</u>
+PO-GUISE	<u>76.98</u>	249
Internvideo2	<u>75.64</u>	509
+PO-GUISE	77.03	<u>399</u>

Table 3: Test results on Toyota-Smarthome (CS) with RGB-only modality at inference.

421 To demonstrate the flexibility of PO-GUISE and its ability to be inte-
 422 grated into other ViT-based backbones, we have performed an additional
 423 experiment using InternVideo2-B/14 [18], see Table 3. It increases the accu-
 424 racy of VideoMAE by 2.5%, but with 41% more GFLOPS. With this model,
 425 the behavior of PO-GUISE is similar. It reduces the number of GFLOPS by
 426 a remarkable 27% while increasing the accuracy by 1.5%. In the rest of the
 427 paper we use VideoMAEv2-base as the backbone.

428 *4.3.2. Efficiency analysis.*

429 In this experiment we explore the trade-off between accuracy and com-
 430 putational cost incurred by different token selection methods applied on
 431 the multi-task model, baseline+HM(P). In Fig. 7 we show the curves of
 432 GFLOPS vs. accuracy obtained by training with different values of ρ and
 433 λ . For the experiments +HM(P)+PR(C+P) and +HM(P)+PR(P) $\rho \in$
 434 $\{0.3, 0.4, 0.55, 0.7\}$. For the +HM(P)+PR(C+P)+MG experiments, $\rho \in$
 435 $\{0.3, 0.4, 0.45, 0.6\}$ and $\lambda \in \{0.1, 0.2, 0.2, 0.3\}$.

436 The curve associated with PO-GUISE (baseline+HM(P)+PR(C+P)+MG)
 437 is always on top for different proportions of selected tokens (ρ). Interestingly,

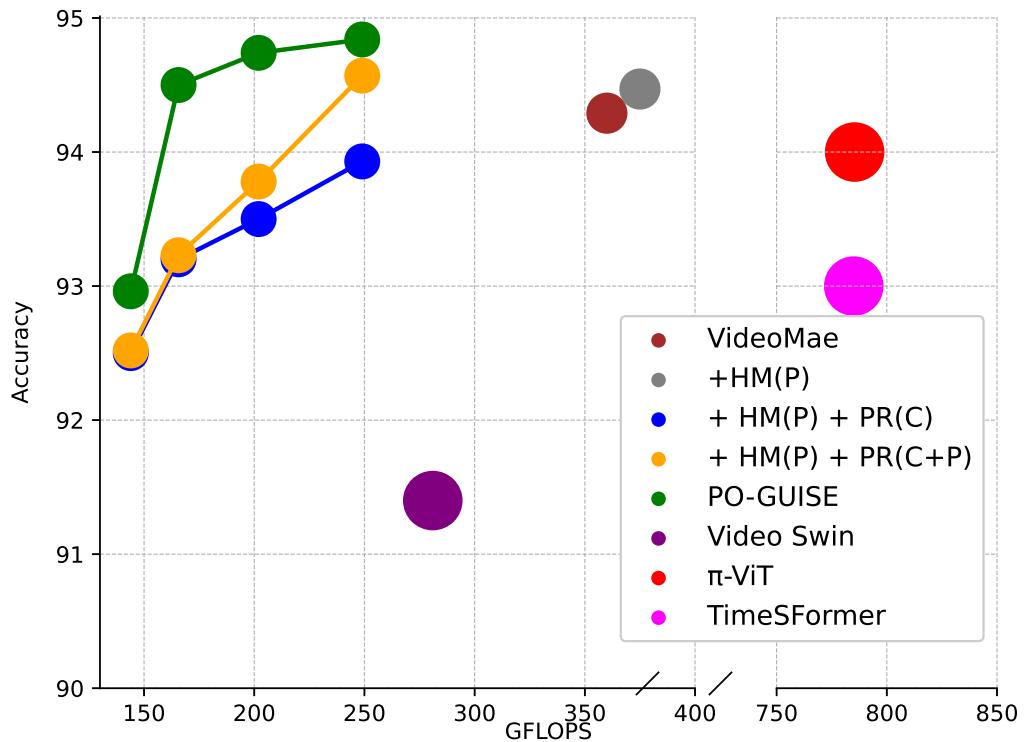


Figure 7: Comparison between GFLOPS and accuracy for different configurations and top methods from SOTA in NTU60 (CS). Circle size represents the number of parameters, either 89M or 121M.

438 at 166 GFlops our accuracy is still 94.50%, on top of previous methods.
439 The difference with the same pruning method but without token merging
440 ($\text{PR}(\text{C+P})$) is significant, while not using pose tokens in pruning reduces
441 even more the performance in all values of ρ .

442 We have also conducted experiments on a Jetson Orin NX (16GB) to eval-
443 uate performance in a resource-limited device. The baseline model Video-
444 MAEv2 processes one sample every 1140 ms with 3608 MB memory usage.
445 This further increases to 1290 ms, and 4125 MB when incorporating human
446 pose estimation. PO-GUISE at 249 GFLOPS reduces these to 640 ms and
447 2973 MB, effectively decreasing by 50% and 27% the computational time and
448 cost. This gain in performance is especially important in the Jetson archi-
449 tecture, where the GPU and CPU share the same unified memory, meaning
450 that a lower model memory requirement leaves more space for other sec-
451 ondary CPU tasks. Our memory usage, 2973 MB, also makes it feasible to
452 implement it on the lower-end Jetson models with 4 GB of memory.

453 *4.3.3. Visualizations.*

454 In this section we show some qualitative results at low token keep rates of
455 our improved token selection method PO-GUISE against the top performer
456 token pruning technique [12], Top-K, and the baseline VideoMAEv2-base
457 model. For a fair comparison, we have configured both models to have a
458 similar number of visual tokens and GFLOPS. Specifically, PO-GUISE uses
459 the keep rates $\rho = 0.1, \lambda = 0.1$ and the Top-K model uses $\rho = 0.2$. In
460 Fig. 8 we show some examples, each square represents a visual token and its
461 normalized attention to class token. If a visual token was selected more than
462 once in time, its attention is aggregated. For ease of comparison, we have

463 used the same color map as in Fig. 1. We can see that PO-GUISE effectively
464 selects the tokens related to the person, while Top-K and the Baseline tend
465 to select irrelevant tokens. We believe this is a side-effect from training ViTs.
466 At inference, these use low-informative background areas of images as a form
467 of repurposed internal computation [48].

468 The human pose detection task is well learned by the PO-GUISE as shown
469 in Figs. 9 and 10. Note that we are learning one motion heatmap per body
470 joint which consists of the sum of probability maps from the 16 frames of
471 the clip. For ease of visualization, we show in the same image the motion
472 heatmaps corresponding to all body joints.

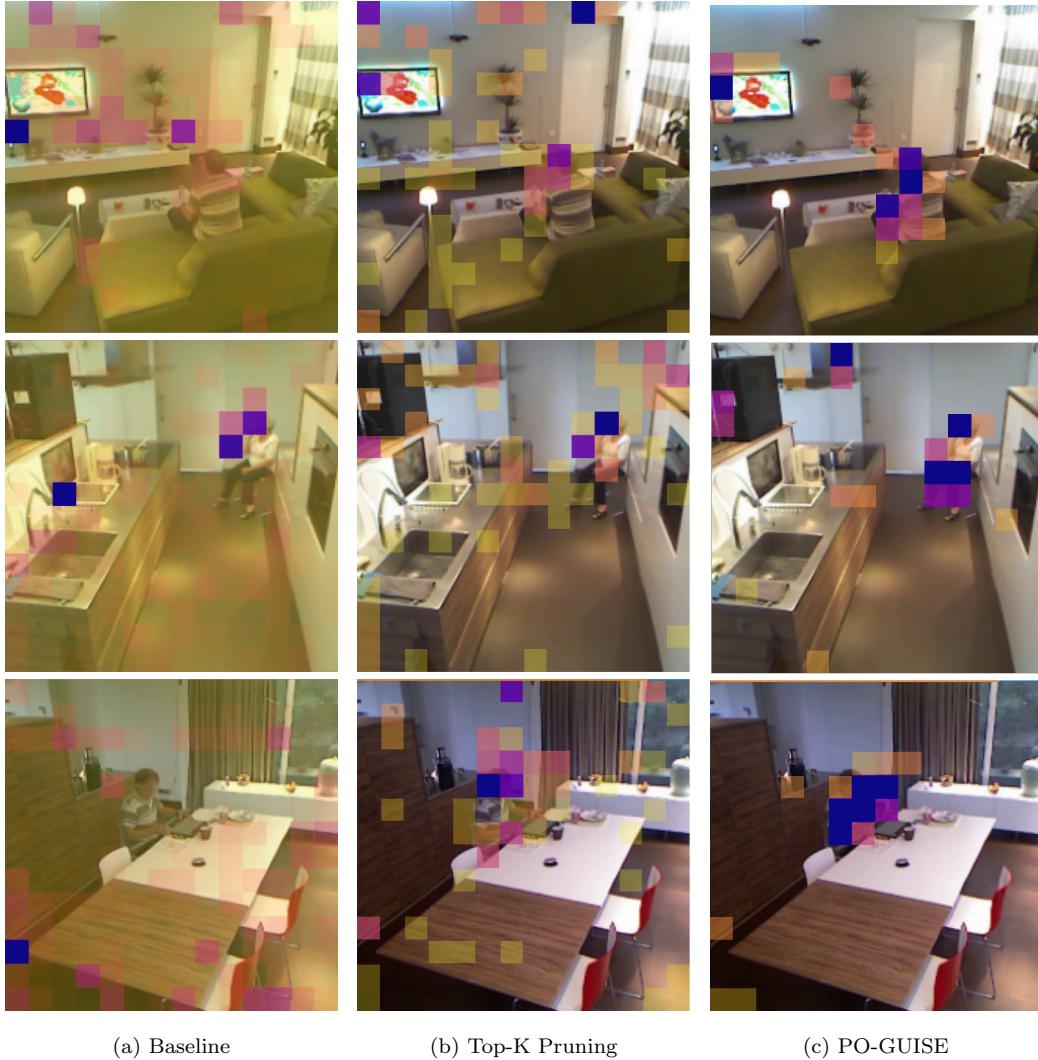
473 *4.3.4. Discussion.*

474 Our contribution is a token selection procedure guided by human motion
475 that, at default settings, not only maintains, but improves the accuracy of
476 a top-performing video transformer. Unlike previous methods, our approach
477 results in a reduction of 30% in GFLOPs. However, since we guide the
478 attention of the transformer towards areas with human motion, it also results
479 in a final increase of the accuracy.

480 *4.4. Comparison with the state-of-the-art*

481 We compare PO-GUISE with state-of-the-art techniques in different ADL
482 recognition datasets: NTU60, NTU120 (Table 5), and Toyota-Smarthome
483 (Table 4).

484 Our method achieves new state-of-the-art results on the Toyota-SmartHome
485 dataset (Table 4), surpassing the previous state-of-the-art, π -ViT [10], by
486 4.07%, 3.77%, and 11.32% across all protocols, respectively. The lower per-



(a) Baseline

(b) Top-K Pruning

(c) PO-GUISE

Figure 8: Visual Token Attention and Selection. Brighter colors indicate higher attention from the selected visual tokens to the class token. For Top-K Pruning and PO-GUISE, we show the attention from the selected tokens at the last stage. For the baseline, the attention maps are obtained from the last layer.

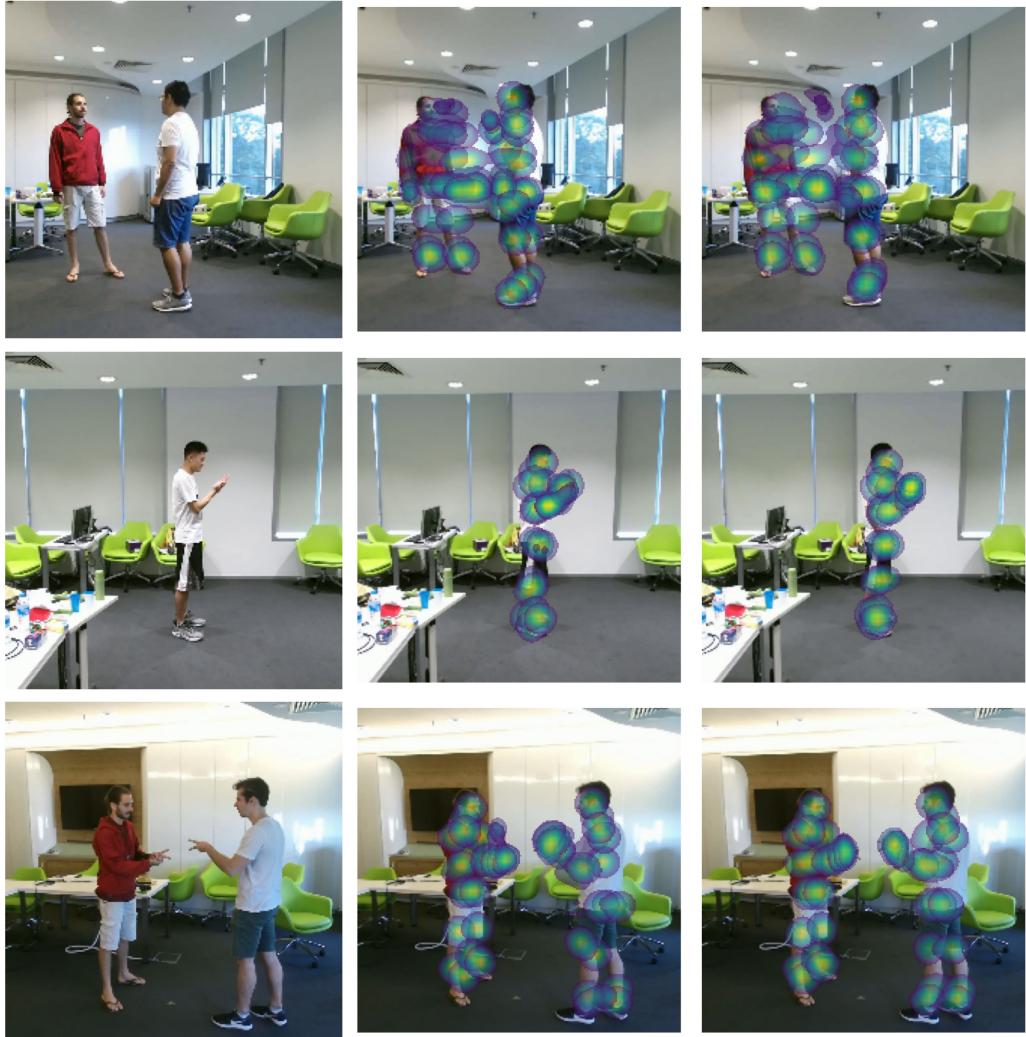


Figure 9: Sample heatmaps from the NTU120 (CS) dataset test set using PO-GUISE. The first column corresponds to the middle frame of the video clip, the second column displays the temporal heatmaps used as training labels, and the third column shows the predicted heatmaps.

Figure 10: Sample heatmaps from the Toyota-SmartHome (CS) dataset test set using PO-GUISE. The first column corresponds to the middle frame of the video clip, the second column displays the temporal heatmaps used as training labels, and the third column shows the predicted heatmaps.

Method	CS	CV1	CV2	GFlops
	mCA. (↑)	mCA. (↑)	mCA. (↑)	(↓)
AssembleNet++[49]	63.6	-	-	-
MotionFormer[50]	65.8	45.2	51.0	369
LTN[51]	65.9	-	54.6	-
TimeSFormer [52]	68.4	50.0	60.6	784
VPN++ [1]	69.0	-	54.9	-
Video Swin [34]	69.8	36.6	48.6	<u>281</u>
π -ViT [10]	72.9	55.2	64.8	785
VideoMAEv2-base	<u>73.14</u>	<u>55.20</u>	<u>67.68</u>	<u>360</u>
+ HM(P)	<u>76.01</u>	<u>57.31</u>	<u>71.82</u>	379
PO-GUISE	76.98	58.98	76.12	249

Table 4: Test results on Toyota-Smarthome over the CS, CV1 and CV2 protocols.

Method	NTU60		NTU120		GFlops
	CS	CV	CS	CSet	
	Acc. (↑)	Acc. (↑)	Acc. (↑)	Acc. (↑)	(↓)
VideoCon [53]	91.4	<u>98.0</u>	85.6	87.5	-
ViewCLR [54]	89.7	94.1	86.2	84.5	-
VPN++ [1]	93.5	99.1	86.7	89.3	-
MotionFormer[50]	85.7	91.6	87.0	87.9	369
TimeSFormer [52]	93.0	97.2	90.6	91.6	784
Video Swin [34]	93.4	96.6	91.4	<u>92.1</u>	<u>281</u>
π -ViT [10]	94.0	<u>97.9</u>	<u>91.9</u>	92.9	785
VideoMAEv2-base	<u>94.29</u>	90.91	91.73	89.64	<u>360</u>
+ HM(P)	<u>94.47</u>	91.27	<u>93.36</u>	91.02	379
PO-GUISE	94.84	92.31	93.47	<u>92.11</u>	249

Table 5: Test results on NTU datasets with RGB-only modality at inference.

487 formance observed in the CV1 protocol, compared to other protocols, is
488 consistent with previous work due to the limited training data available for
489 this challenging single-camera setting.

490 In the NTU datasets (Table 5), we also surpass state-of-the-art perfor-
491 mance on all cross-subject benchmarks compared to methods utilizing only
492 RGB input. PO-GUISE outperforms the prior results of π -ViT [10] by 0.84%,
493 and 1.57% on each dataset’s cross-subject protocol (CS), respectively. Im-
494 portantly, we achieve these performance gains while simultaneously reducing
495 the computational cost of π -ViT by 536 GFLOPS.

496 The difference in performance observed between the Toyota-SmartHome
497 and NTU datasets for cross-view protocols reflects the difference in diffi-
498 culty between these benchmarks. In Toyota-SmartHome, the test cameras
499 maintain a similar viewpoint to the training cameras, mostly changing the
500 room the subject is present in. The NTU datasets, and NTU 60 in partic-
501 ular, present a significantly more challenging cross-view scenario, where the
502 cameras used during testing are placed quite differently compared to those
503 utilized for training. However, the difference in size between these datasets
504 explains the better accuracy in NTU. Previous methods have attempted to
505 address this challenge by incorporating 3D pose information during training,
506 π -ViT [10] and VPN++ [1]. Overall, these results highlight the effectiveness
507 of PO-GUISE in cross-subject protocols, with the use of 3D pose information
508 as a promising avenue for future work focused on cross-view protocols.

509 **5. Conclusions**

510 State-of-the-art video transformers for action recognition operate with a
511 quadratic complexity regarding the number of input tokens, which presents a
512 significant computational challenge. Although token pruning offers a promis-
513 ing approach to reduce this computational burden, existing methods often
514 lead to a decrease in action recognition accuracy.

515 Our method addresses this limitation by leveraging human motion infor-
516 mation to selectively retain the most informative tokens for action recogni-
517 tion. This approach achieves a compelling balance between accuracy and
518 computational efficiency. Specifically in default settings, our method reduces
519 the number of visual tokens, resulting in a 30% reduction in GFLOPS while
520 simultaneously increasing accuracy by up to 8%.

521 Although our method demonstrates notable success on all cross-subject
522 benchmarks, further research is needed to enhance computational efficiency
523 and accuracy on more challenging cross-view action recognition tasks. Our
524 future work will explore the integration of additional semantic tasks to further
525 improve token selection, as well as the incorporation of 3D pose information
526 during training.

527 The models and code required to reproduce the experiments described in
528 this paper will be made publicly available upon publication.

529 **6. CRediT authorship contribution statement**

530 RP: Software, Investigation, Writing – original draft, Writing – review &
531 editing. RV: Investigation, Methodology, Writing – original draft, Writing –
532 review & editing. JMB: Conceptualization, Methodology, Writing – original

533 draft, Writing – review & editing, Supervision. LMB, LB: Conceptualization,
534 Methodology, Writing – review & editing, Supervision, Funding Acquisition.

535 **7. Declaration of competing interest**

536 The authors declare that they have no known competing financial inter-
537 ests or personal relationships that could have appeared to influence the work
538 reported in this paper.

539 **8. Data availability**

540 The authors do not have permission to share data, as we are using public
541 datasets owned by other researchers.

542 **9. Funding sources**

543 This work has been supported by the projects PID2021-126623OB-I00,
544 TED2021-130131A-I00, PDC2022-133470-I00, PID2022-137581OB-I00 and
545 by NextGenerationEU/PRTR, PLEC2023-010343 (INARTRANS 4.0) all from
546 MICIU/AEI/10.13039/501100011033/FEDER, UE. RP, JMB, LMB and LB
547 are members of the Madrid ELLIS Unit, funded by the Autonomous Com-
548 munity of Madrid.

549 **References**

- 550 [1] S. Das, R. Dai, D. Yang, F. Bremond, Vpn++: Rethinking video-pose
551 embeddings for understanding activities of daily living, *IEEE Transac-*
552 *tions on Pattern Analysis and Machine Intelligence* 44 (2022) 9703–9717.
553 doi:10.1109/TPAMI.2021.3127885.

- 554 [2] K. Simonyan, A. Zisserman, Two-stream convolutional networks for
555 action recognition in videos, in: Z. Ghahramani, M. Welling, C. Cortes,
556 N. Lawrence, K. Weinberger (Eds.), NeurIPS, volume 27, 2014.
- 557 [3] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, L. V. Gool,
558 Temporal segment networks: Towards good practices for deep action
559 recognition, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), ECCV,
560 volume 9912 of *Lecture Notes in Computer Science*, Springer, 2016, pp.
561 20–36.
- 562 [4] J. Carreira, A. Zisserman, Quo vadis, action recognition? a new model
563 and the kinetics dataset, in: CVPR, 2017, pp. 4724–4733.
- 564 [5] C. Feichtenhofer, A. Pinz, R. P. Wildes, Spatiotemporal residual net-
565 works for video action recognition, in: NeurIPS, 2016, pp. 3468–3476.
- 566 [6] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, M. Paluri, A closer
567 look at spatiotemporal convolutions for action recognition, in: CVPR,
568 Computer Vision Foundation / IEEE Computer Society, 2018, pp. 6450–
569 6459.
- 570 [7] J. Lin, C. Gan, S. Han, TSM: temporal shift module for efficient video
571 understanding, in: ICCV, IEEE, 2019, pp. 7082–7092.
- 572 [8] Y. Chen, D. Chen, R. Liu, H. Li, W. Peng, Video action recognition
573 with attentive semantic units, in: ICCV, IEEE, 2023, pp. 10136–10146.
- 574 [9] L. Chen, Z. Tong, Y. Song, G. Wu, L. Wang, Efficient video action
575 detection with token dropout and context refinement, in: ICCV, 2023.

- 576 [10] D. Reilly, S. Das, Just add?! pose induced video transformers for un-
577 derstanding activities of daily living, in: Proceedings of the IEEE/CVF
578 Conference on Computer Vision and Pattern Recognition, 2024, pp.
579 18340–18350.
- 580 [11] L. Wang, B. Huang, Z. Zhao, Z. Tong, Y. He, Y. Wang, Y. Wang,
581 Y. Qiao, Videomae v2: Scaling video masked autoencoders with dual
582 masking, in: CVPR, 2023, pp. 14549–14560.
- 583 [12] J. B. Haurum, S. Escalera, G. W. Taylor, T. B. Moeslund, Which
584 tokens to use? investigating token reduction in vision transformers,
585 in: IEEE/CVF International Conference on Computer Vision, ICCV
586 2023 - Workshops, Paris, France, October 2-6, 2023, IEEE, 2023, pp.
587 773–783. URL: <https://doi.org/10.1109/ICCVW60793.2023.00085>.
588 doi:10.1109/ICCVW60793.2023.00085.
- 589 [13] D. Bolya, C. Fu, X. Dai, P. Zhang, C. Feichtenhofer, J. Hoffman, Token
590 merging: Your vit but faster, in: ICLR, 2023.
- 591 [14] Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, P. Xie, Evit: Expediting
592 vision transformers via token reorganizations, in: ICLR, 2022.
- 593 [15] S. Wei, T. Ye, S. Zhang, Y. Tang, J. Liang, Joint token pruning and
594 squeezing towards more aggressive compression of vision transformers,
595 in: Proceedings of the IEEE/CVF Conference on Computer Vision and
596 Pattern Recognition, 2023, pp. 2092–2101.
- 597 [16] C. Zhang, Y. Gao, T. Meng, T. Wang, Partitioned token fusion and

- 598 pruning strategy for transformer tracking, *Image and Vision Computing*
599 154 (2025) 105431.
- 600 [17] S. Das, R. Dai, M. Koperski, L. Minciullo, L. Garattoni, F. Bremond,
601 G. Francesca, Toyota smarthome: Real-world activities of daily living,
602 in: *The IEEE International Conference on Computer Vision (ICCV)*,
603 2019.
- 604 [18] Y. Wang, K. Li, X. Li, J. Yu, Y. He, C. Wang, G. Chen, B. Pei, R. Zheng,
605 J. Xu, Z. Wang, et al., Internvideo2: Scaling video foundation models
606 for multimodal video understanding, *arXiv preprint arXiv:2403.15377*
607 (2024).
- 608 [19] W. Du, Y. Wang, Y. Qiao, RPAN: an end-to-end recurrent pose-
609 attention network for action recognition in videos, in: *ICCV*, IEEE
610 Computer Society, 2017, pp. 3745–3754.
- 611 [20] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, M. J. Black, Towards under-
612 standing action recognition, in: *ICCV*, IEEE Computer Society, 2013,
613 pp. 3192–3199.
- 614 [21] V. Choutas, P. Weinzaepfel, J. Revaud, C. Schmid, Potion: Pose mo-
615 tion representation for action recognition, in: *CVPR*, Computer Vision
616 Foundation / IEEE Computer Society, 2018, pp. 7024–7033.
- 617 [22] M. Liu, J. Yuan, Recognizing human actions as the evolution of pose
618 estimation maps, in: *CVPR*, Computer Vision Foundation / IEEE
619 Computer Society, 2018, pp. 1159–1168.

- 620 [23] A. Yan, Y. Wang, Z. Li, Y. Qiao, Pa3d: Pose-action 3d machine for
621 video recognition, in: CVPR, 2019, pp. 7914–7923.
- 622 [24] A. Shah, S. Mishra, A. Bansal, J. Chen, R. Chellappa, A. Shrivastava,
623 Pose and joint-aware action recognition, in: IEEE Winter Conf. on
624 Appl. of Comput. Vis., IEEE, 2022, pp. 141–151.
- 625 [25] D. Ahn, S. Kim, H. Hong, B. C. Ko, Star-transformer: A spatio-
626 temporal cross attention transformer for human action recognition, in:
627 IEEE Winter Conf. on Appl. of Comput. Vis., 2023, pp. 3330–3339.
- 628 [26] S. Kim, D. Ahn, B. C. Ko, Cross-modal learning with 3d deformable
629 attention for action recognition, in: ICCV, 2023, pp. 10231–10241.
- 630 [27] H. Zhang, M. C. Leong, L. Li, W. Lin, Pgvt: Pose-guided video trans-
631 former for fine-grained action recognition, in: IEEE Winter Conf. on
632 Appl. of Comput. Vis., 2024, pp. 6645–6656.
- 633 [28] H. Duan, Y. Zhao, K. Chen, D. Lin, B. Dai, Revisiting skeleton-based
634 action recognition, in: CVPR, 2022, pp. 2959–2968.
- 635 [29] A. Holzbock, A. Tsaregorodtsev, Y. Dawoud, K. Dietmayer, V. Bela-
636 giannis, A spatio-temporal multilayer perceptron for gesture recogni-
637 tion, in: 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp.
638 1099–1106. doi:10.1109/IV51971.2022.9827054.
- 639 [30] Z. Li, H. Guo, L.-P. Chau, C. H. Tan, X. Ma, D. Lin, K.-H. Yap, Object-
640 augmented skeleton-based action recognition, in: 2023 IEEE 5th Inter-
641 national Conference on Artificial Intelligence Circuits and Systems
642 (AICAS), 2023, pp. 1–4.

- 643 [31] M. Martin, D. Lerch, M. Voit, Viewpoint invariant 3d driver body pose-
644 based activity recognition, in: IEEE Intelligent Vehicles Symposium,
645 IV, IEEE, 2023, pp. 1–6.
- 646 [32] D. C. Luvizon, D. Picard, H. Tabia, 2d/3d pose estimation and action
647 recognition using multitask deep learning, in: CVPR, Computer Vision
648 Foundation / IEEE Computer Society, 2018, pp. 5137–5146.
- 649 [33] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lucic, C. Schmid, Vivit:
650 A video vision transformer, in: ICCV, IEEE, 2021, pp. 6816–6826.
- 651 [34] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, H. Hu, Video swin
652 transformer, in: CVPR, IEEE, 2022, pp. 3192–3201.
- 653 [35] H. Ma, Z. Wang, Y. Chen, D. Kong, L. Chen, X. Liu, X. Yan, H. Tang,
654 X. Xie, Ppt: token-pruned pose transformer for monocular and multi-
655 view human pose estimation, in: ECCV, Springer, 2022, pp. 424–442.
- 656 [36] S. Kim, G.-J. Yoon, J. Song, S. M. Yoon, Simultaneous image patch
657 attention and pruning for patch selective transformer, Image and Vision
658 Computing 150 (2024) 105239.
- 659 [37] Z. Wang, X. Lin, N. Wu, L. Yu, K.-T. Cheng, Z. Yan, Dtmformer:
660 Dynamic token merging for boosting transformer-based medical image
661 segmentation, in: Proceedings of the AAAI Conference on Artificial
662 Intelligence, volume 38, 2024, pp. 5814–5822.
- 663 [38] Y. Xu, J. Zhang, Q. Zhang, D. Tao, Vitpose: Simple vision transformer
664 baselines for human pose estimation, Advances in Neural Information
665 Processing Systems 35 (2022) 38571–38584.

- 666 [39] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, A. C. Kot, Ntu
667 rgb+ d 120: A large-scale benchmark for 3d human activity understand-
668 ing, IEEE transactions on pattern analysis and machine intelligence 42
669 (2019) 2684–2701.
- 670 [40] A. Navon, A. Shamsian, I. Achituv, H. Maron, K. Kawaguchi,
671 G. Chechik, E. Fetaya, Multi-task learning as a bargaining game, arXiv
672 preprint arXiv:2202.01017 (2022).
- 673 [41] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in:
674 International Conference on Learning Representations, 2019. URL:
675 <https://openreview.net/forum?id=Bkg6RiCqY7>.
- 676 [42] I. Loshchilov, F. Hutter, SGDR: Stochastic gradient descent with warm
677 restarts, in: International Conference on Learning Representations,
678 2017. URL: <https://openreview.net/forum?id=Skq89Scxx>.
- 679 [43] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Reg-
680 ularization strategy to train strong classifiers with localizable features,
681 in: Proceedings of the IEEE/CVF international conference on computer
682 vision, 2019, pp. 6023–6032.
- 683 [44] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz,
684 mixup: Beyond empirical risk minimization, in: Interna-
685 tional Conference on Learning Representations, 2018. URL:
686 <https://openreview.net/forum?id=r1Ddp1-Rb>.
- 687 [45] E. D. Cubuk, B. Zoph, J. Shlens, Q. V. Le, Randaugment: Practical
688 automated data augmentation with a reduced search space, in: Pro-

- 689 ceedings of the IEEE/CVF conference on computer vision and pattern
690 recognition workshops, 2020, pp. 702–703.
- 691 [46] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
692 B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chour-
693 dia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng,
694 J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch,
695 M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher,
696 Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk,
697 M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao,
698 K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu, S. Chintala, Py-
699 Torch 2: Faster Machine Learning Through Dynamic Python Byte-
700 code Transformation and Graph Compilation, in: 29th ACM Inter-
701 national Conference on Architectural Support for Programming Lan-
702 guages and Operating Systems, Volume 2 (ASPLOS '24), ACM, 2024.
703 URL: <https://pytorch.org/assets/pytorch2-2.pdf>.
- 704 [47] L. Biewald, Experiment tracking with weights and biases, 2020. URL:
705 <https://www.wandb.com/>, software available from wandb.com.
- 706 [48] T. Darcet, M. Oquab, J. Mairal, P. Bojanowski, Vision transformers
707 need registers, in: The Twelfth International Conference on Learning
708 Representations, 2024.
- 709 [49] M. S. Ryoo, A. Piergiovanni, J. Kangaspunta, A. Angelova, Assem-
710 blenet++: Assembling modality representations via attention connec-
711 tions, in: Computer Vision–ECCV 2020: 16th European Conference,

- 712 Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16, Springer,
713 2020, pp. 654–671.
- 714 [50] M. Patrick, D. Campbell, Y. Asano, I. Misra, F. Metze, C. Feichtenhofer,
715 A. Vedaldi, J. F. Henriques, Keeping your eye on the ball: Trajectory
716 attention in video transformers, *Advances in neural information pro-*
717 *cessing systems* 34 (2021) 12493–12506.
- 718 [51] D. Yang, Y. Wang, Q. Kong, A. Dantcheva, L. Garattoni, G. Francesca,
719 F. Brémond, Self-supervised video representation learning via latent
720 time navigation, in: *Proceedings of the AAAI Conference on Artificial*
721 *Intelligence*, volume 37, 2023, pp. 3118–3126.
- 722 [52] G. Bertasius, H. Wang, L. Torresani, Is space-time attention all you
723 need for video understanding?, in: *Proceedings of the International*
724 *Conference on Machine Learning (ICML)*, 2021.
- 725 [53] K. Shah, A. Shah, C. P. Lau, C. M. de Melo, R. Chellapp, Multi-
726 view action recognition using contrastive learning, in: *2023 IEEE/CVF*
727 *Winter Conference on Applications of Computer Vision (WACV)*, 2023,
728 pp. 3370–3380. doi:10.1109/WACV56688.2023.00338.
- 729 [54] S. Das, M. S. Ryoo, Viewclr: Learning self-supervised video representa-
730 tion for unseen viewpoints, in: *2023 IEEE/CVF Winter Conference*
731 *on Applications of Computer Vision (WACV)*, 2023, pp. 5562–5572.
732 doi:10.1109/WACV56688.2023.00553.