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Abstract

In this paper, we present a novel family of multiscale local feature descrip-1

tors, a theoretically and intuitively well justified variant of SURF which is2

straightforward to implement but which nevertheless is capable of demon-3

strably better performance with comparable computational cost. Our family4

of descriptors, called Gauge-SURF (G-SURF), are based on second-order5

multiscale gauge derivatives. While the standard derivatives used to build a6

SURF descriptor are all relative to a single chosen orientation, gauge deriva-7

tives are evaluated relative to the gradient direction at every pixel. Like8

standard SURF descriptors, G-SURF descriptors are fast to compute due to9

the use of integral images, but have extra matching robustness due to the10

extra invariance offered by gauge derivatives. We present extensive experi-11

mental image matching results on the Mikolajczyk and Schmid dataset which12

show the clear advantages of our family of descriptors against first-order lo-13

cal derivatives based descriptors such as: SURF, Modified-SURF (M-SURF)14

and SIFT, in both standard and upright forms. In addition, we also show ex-15

perimental results on large-scale 3D Structure from Motion (SfM) and visual16

categorization applications.17
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1. Introduction18

Given two images of the same scene, image matching is the problem of19

establishing correspondence and is a core component of all sorts of computer20

vision systems, particularly in classic problems such as Structure from Mo-21

tion (SfM) [1], visual categorization [2] or object recognition [3]. There has22

been a wealth of work in particular on matching image keypoints, and the23

key advances have been in multiscale feature detectors and invariant descrip-24

tors which permit robust matching even under significant changes in viewing25

conditions.26

We have studied the use of gauge coordinates [4] for image matching and27

SfM applications and incorporated them into a Speeded-Up Robust Features28

(SURF) [5] descriptor framework to produce a family of descriptors of dif-29

ferent dimensions which we call Gauge-SURF (G-SURF) descriptors. With30

gauge coordinates, every pixel in the image is described in such a way that31

if we have the same 2D local structure, the description of the structure is32

always the same, even if the image is rotated. This is possible since multi-33

scale gauge derivatives are rotation and translation invariant. In addition,34

gauge derivatives play a key-role in the formulation of non-linear diffusion35

processes, as will be explained in Section 3.1. By using gauge derivatives,36

we can make blurring locally adaptive to the image itself, without affecting37

image details.38

The G-SURF descriptors are very related to non-linear diffusion [6, 7]39

processes in image processing and computer vision. In the typical Gaussian40
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scale-space [8] framework, details are blurred during evolution (i.e. the con-41

volution of the original image with Gaussian kernels of increasing standard42

deviation). The advantage of blurring is the removal of noise, but relevant43

image structures like edges are blurred and drift away from their original lo-44

cations during evolution. In general, a good solution should be to make the45

blurring locally adaptive to the image yielding the blurring of noise, while46

retaining details or edges. Instead of local first-order spatial derivatives, G-47

SURF descriptors measure per pixel information about image blurring and48

edge or detail enhancing, resulting in a more discriminative descriptors.49

We have obtained notable results in an extensive image matching evalua-50

tion using the standard evaluation framework of Mikolajczyk and Schmid [9].51

In addition, we have tested our family of descriptors in large-scale 3D SfM52

datasets [10] and visual categorization experiments [2] with satisfactory re-53

sults. Our results show that G-SURF descriptors outperform or approximate54

state of the art methods in accuracy while exhibiting low computational de-55

mands making it suitable for real-time applications.56

We are interested in robust multiscale feature descriptors, to reliably57

match two images in real-time for visual odometry [11] and large-scale 3D58

SfM [10] applications. Image matching here, is in fact a difficult task to solve59

due to the large motion between frames and the high variability of camera60

movements. For this purpose, we need desciptors that are fast to compute61

and at the same time exhibit high performance.62

In addition, we have created an open-source library called OpenGSURF63

that contains all the family of G-SURF descriptors and we plan to make it64

publicly available. This family of descriptors comprises several descriptors65
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of different dimensions based on second-order multiscale gauge derivatives.66

Depending on the application some descriptors may be preferred instead of67

others. For example, for real-time applications a low-dimensional descriptor68

should be preferred instead of a high-dimensional one, whereas for image-69

matching applications considering severe image transformations one can ex-70

pect a higher recall by using high-dimensional descriptors. To the best of our71

knowledge, this is the first open source library that allows the user to choose72

between different dimensional descriptors. Current open source descriptors73

libraries [12, 13] just have implementations for the standard SURF and Scale74

Invariant Feature Transform (SIFT) [14] descriptors’ default dimensions (6475

and 128 respectively). This can be a limitation and a computational bot-76

tleneck for some real-time applications that do not necessarily need those77

default descriptor dimensions.78

The rest of the paper is organized as follows: Related work is described in79

Section 2. Gauge coordinates are introduced in Section 3 and the importance80

of gauge derivatives in non-linear diffusion schemes is reviewed in Section 3.1.81

Then we briefly discuss SURF based descriptors in Section 4. The overall82

framework of our family of descriptors is explained in Section 5. Finally, we83

show extensive experimental results in image matching, large-scale 3D SfM84

and visual categorization applications in Section 6.85

2. Related Work86

The highly influential SIFT [14] features have been widely used in applica-87

tions from mobile robotics to object recognition, but are relatively expensive88

to compute and are not suitable for some applications with real-time de-89
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mands. Inspired by SIFT, Bay et al. [5] proposed SURF features, which90

define both a detector and a descriptor. SURF features exhibit better re-91

sults than previous schemes with respect to repeatability, distinctiviness and92

robustness, but at the same time can be computed much faster thanks to the93

use of integral images [15]. Recently, Agrawal et al. [16] proposed some mod-94

ifications of SURF in both the detection and description steps. They intro-95

duced Center Surround Extremas (CenSurE) features and showed that they96

outperform previous detectors and have better computational characteristics97

for real-time applications. Their variant of the SURF descriptor, Modified-98

SURF (M-SURF), efficiently handles the descriptor boundaries problem and99

uses a more intelligent two-stage Gaussian weighting scheme in contrast to100

the original implementation which uses a single Gaussian weighting step.101

All the mentioned approaches rely on the use of the Gaussian scale-102

space [8] framework to extract features at different scales. An original image103

is blurred by convolution with Gaussian kernels of successively large standard104

deviation to identify features at increasingly large scales. The main drawback105

of the Gaussian kernel and its set of partial derivatives is that both interest-106

ing details and noise are blurred away to the same degree. It seems to be107

more appropriate in feature description to make blurring locally adaptive to108

the image data so that noise will be blurred, while at the same time details109

or edges will remain unaffected. In this way, we can increase distinctiveness110

when describing an image region at different scale levels. In spirit, non-linear111

diffusion shares some similarities with the geometric blur proposed by Berg112

and Malik [17], in where the the amount of Gaussian blurring is proportional113

to the distance from the point of interest.114
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From their definition, gauge derivatives are local invariants. Matching by115

local invariants has previously been studied in the literature. In [18], Schmid116

and Mohr used the family of local invariants known as local jet [19] for image117

matching applications. Their descriptor vector contained 8 invariants up to118

third order for every point of interest in the image. This work represented a119

step forward over previous invariant recognition schemes [20]. In [9], Mikola-120

jczyk and Schmid compared the performance of the local jet (with invariants121

up to third order) against other descriptors such as steerable filters [21], im-122

age moments [22] or SIFT. In their experiments the local jet exhibits poor123

performance compared to SIFT. We hypothesize that this poor performance124

is due to the fixed settings used in the experiments, such as a fixed image125

patch size and a fixed Gaussian derivative scale. In addition, invariants of126

high order are more sensitive to geometric and photometric distortions than127

first-order methods. In [23], the local jet was again used for matching ap-128

plications, and they showed that even a descriptor vector of dimension 6129

can outperfom SIFT for small perspective changes. By a suitable scaling130

and normalization, the authors obtained invariance to spatial zooming and131

intensity scaling. Although these results were encouraging, a more detailed132

comparison with other descriptors would have been desirable. However, this133

work motivated us to incorporate gauge invariants into the SURF descriptor134

framework.135

Brown et al. [10], proposed a framework for learning discriminative local136

dense image descriptors from training data. The training data was obtained137

from large-scale real 3D SfM scenarios, and accurate ground truth corre-138

spondences were generated by means of multi-view stereo matching tech-139
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niques [24, 25] that allow to obtain very accurate correspondences between140

3D points. They describe a set of building blocks for building discrimina-141

tive local descriptors that can be combined together and jointly optimized142

to minimize the error of a nearest-neighbor classifier. In this paper, we use143

the evaluation framework of Brown et al. to evaluate the performance of144

multiscale gauge derivatives under real large-scale 3D SfM scenarios.145

3. Gauge Coordinates and Multiscale Gauge Derivatives146

Gauge coordinates are a very useful tool in computer vision and image147

processing. Using gauge coordinates, every pixel in the image is described148

in such a way that if we have the same 2D local structure, the description149

of the structure is always the same, even if the image is rotated. This is150

possible since every pixel in the image is fixed separately in its own local151

coordinate frame defined by the local structure itself and consisting of the152

gradient vector ~w and its perpendicular direction ~v:153

~w =
(

∂L
∂x
, ∂L
∂y

)

= 1√
L2
x
+L2

y

· (Lx, Ly)

~v =
(

∂L
∂y
,−∂L

∂x

)

= 1√
L2
x
+L2

y

· (Ly,−Lx)
(1)

In Equation 1, L denotes the convolution of the image I with a 2D Gaussian154

kernel g(x, y, σ), where σ is the kernel’s standard deviation or scale parame-155

ter:156

L(x, y, σ) = I(x, y) ∗ g(x, y, σ) (2)

Derivatives can be taken up to any order and at multiple scales for detecting157

features of different sizes. Raw image derivatives can only be computed in158

terms of the Cartesian coordinate frame x and y, so in order to obtain gauge159
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derivatives we need to use directional derivatives with respect to a fixed160

gradient direction (Lx, Ly). The ~v direction is tangent to the isophotes or161

lines of constant intensity, whereas ~w points in the direction of the gradient,162

thus Lv = 0 and Lw =
√

L2
x + L2

y. If we take derivatives with respect to163

first-order gauge coordinates, since these are fixed to the object, irrespective164

of rotation or translation, we obtain the following interesting results:165

1. Every derivative expressed in gauge coordinates is an orthogonal in-166

variant. The first-order derivative ∂L
∂ ~w

is the derivative in the gradient167

direction, and in fact the gradient is an invariant itself.168

2. Since ∂L
∂~v

= 0, this implies that there is no change in the luminance if169

we move tangentially to the constant intensity lines.170

By using gauge coordinates, we can obtain a set of invariant derivatives171

up to any order and scale that can be used efficiently for image description172

and matching. Of special interest, are the second-order gauge derivatives173

Lww and Lvv:174

Lww =
L2
xLxx + 2 · LxLxyLy + L2

yLyy

L2
x + L2

y

(3)

175

Lvv =
L2
yLxx − 2 · LxLxyLy + L2

xLyy

L2
x + L2

y

(4)

These two gauge derivatives can be obtained as the product of gradients176

in ~w and ~v directions and the 2×2 second-order derivatives or Hessian matrix.177

Lww =
1

L2
x + L2

y

(

Lx Ly

)





Lxx Lxy

Lyx Lyy









Lx

Ly



 (5)

178

Lvv =
1

L2
x + L2

y

(

Ly −Lx

)





Lxx Lxy

Lyx Lyy









Ly

−Lx



 (6)
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Lvv is often used as a ridge detector. Ridges are elongated regions of179

approximately constant width and intensity, and at these points the curvature180

of the isophotes is high. Lww gives information about gradient changes in181

the gradient direction.182

Figure 1(a) illustrates first-order gauge coordinates. Unit vector ~v is183

always tangential to lines of constant image intensity (isophotes), while unit184

vector ~w is perpendicular and points in the gradient direction. Figure 1(b)185

depicts an example of the resulting second-order gauge derivative Lww on one186

of the images from the Mikolajczyk and Schmid’s standard dataset [9].

(a) (b)

Figure 1: (a) Local first-order gauge coordinates. (b) Resulting gauge derivative Lww

applied on the first image of the Leuven dataset, at a fixed scale σ = 2 pixels.

187

According to [26], where Schmid and Mohr explicitly describe the set of188

second-order invariants used in the local jet, we can find two main differences189

between the second-order gauge derivatives Lww, Lvv and the local jet. The190

first difference is that by definition gauge derivatives are normalized with191

respect to the modulus of the gradient at each pixel. However, this normal-192

ization can be also included in the local jet formulation as shown in [23]. The193
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second difference, and the most important one, is that the invariant Lvv is not194

included in the set of second-order derivatives of the local jet. The invariant195

Lvv plays a fundamental role in non-linear diffusion processes [7, 27]. Typi-196

cally, Equation 4 is used to evolve the image in a way that locally adapts the197

amount of blurring to differential invariant structure in the image in order198

to perform edge-preserving smoothing [4].199

3.1. Importance of Gauge Derivatives in Non-Linear Diffusion Schemes200

In this section we aim to throw some more light on our decision to use201

gauge derivatives in a feature descriptor by briefly reviewing non-linear image202

diffusion, and highlighting the important role of gauge derivatives in these203

schemes. Koendenrik [28] and Lindeberg [8] showed that the Gaussian kernel204

and its set of partial derivatives provide the unique set of operators for the205

construction of linear scale-space under certain conditions. Some examples206

of algorithms that rely on the Gaussian scale-space framework are SIFT [14]207

and SURF [5] invariant features.208

However, to repeat, details are blurred in Gaussian scale-space during209

evolution. The advantage of blurring is the removal of noise, but relevant210

image structures like edges are blurred and drift away from their original211

locations during evolution. In general, a good solution should be to make212

the blurring locally adaptive to the image yielding the blurring of noise, while213

retaining details or edges.214

In the early nineties, several Partial Differential Equations (PDEs) were215

proposed for dealing with the mentioned Gaussian scale-space problem. Some216

famous examples are the Perona-Malik equation [6] and the Mean Curvature217

Motion (MCM) [7]. Note that in general, non-linear diffusion approaches218
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perform better than linear diffusion schemes [4, 29]. Recently, Kuijper showed219

in [29] that the evolution of an image can be expressed as a linear combination220

of the two different second-order gauge derivatives Lww and Lvv. According221

to this, we can conclude that non-linear approaches steer between blurring222

Lww and edge regularising Lvv. Some examples of practical applications of223

Lww flow are image impaiting [30]. For Lvv flow an example is the cited224

MCM [7].225

Based on this, we can think about a local invariant descriptor that takes226

into account the information encoded in the two gauge derivatives Lvv and227

Lww while the image evolves according to a scale σ. Notice that in our family228

of descriptors we just replace the first-order local derivatives Lx and Ly with229

the gauge derivatives Lvv and Lww and do not perform any image evolution230

through a non-linear scale space. That is, our descriptors will measure in-231

formation about blurring (Lww) and edge enhancing (Lvv) for different scale232

levels.233

Another difference between first-order local derivatives and gauge ones234

is that gauge derivatives are intrisically weighted with the strength of the235

gradient Lw. That is, the weighting is intrinsically related to the image236

structure itself, and no artificial weighting such as Gaussian weighting is237

needed. This is an important advantage over other descriptors, such as for238

example SURF, where different Gaussian weighting schemes [16] have been239

proposed to improve the performance of the original descriptor.240
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(a) (b) (c)

(d) (e) (f)

Figure 2: Gaussian scale-space versus Non-Linear diffusion schemes. The first row depicts

the evolution of the sixth image from the Mikolajczyk and Schmid’s Bikes dataset consid-

ering a Gaussian scale space of increasing σ in pixels. (a) σ = 2 (b) σ = 4 (c) σ = 8. The

second row depicts the evolution of the same reference image but considering the MCM

non-linear diffusion flow. (d) σ = 2 (e) σ = 4 (f) σ = 8. Notice how with non-linear

diffusion schemes, details are enhanced and noise is removed, whereas for the Gaussian

scale-space, details and noise are blurred in the same degree.
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4. SURF Based Descriptors241

Agrawal et al. proposed in [16] the Modified Upright-SURF descriptor242

(MU-SURF) which is a variant of the original U-SURF descriptor. MU-243

SURF handles descriptor boundary effects and uses a more robust and in-244

telligent two-stage Gaussian weighting scheme. For a detected feature at245

scale s, Haar wavelet responses Lx and Ly of size 2s are computed over a246

24s × 24s region. This region is divided into 9s × 9s subregions with an247

overlap of 2s. The Haar wavelet responses in each subregion are weighted248

with a Gaussian (σ1 = 2.5s) centered on the subregion center and summed249

into a descriptor vector dv = (
∑

Lx,
∑

Ly,
∑ |Lx|,

∑ |Ly|). Then, each sub-250

region vector is weighted using a Gaussian (σ2 = 1.5s) defined over a mask of251

4× 4 and centered on the interest keypoint. Finally, the descriptor vector of252

length 64 is normalized into a unit vector to achieve invariance to contrast.253

Figure 3(a) depicts the involved regions and subregions in the MU-SURF254

descriptor building process.255

The main difference between the MU-SURF and U-SURF descriptor is256

that the size of the region is reduced to 20s× 20s divided into 5s× 5s sub-257

regions without any overlap between subregions. In addition, Haar wavelet258

responses in each subregion are weighted by a Gaussian (σ = 3.3s) centered259

at the interest keypoint. This is a very small standard deviation considering260

that the square grid size is 20s × 20s. Figure 3(b) depicts a normalized 2D261

Gaussian kernel considering a standard deviation σ = 3.3. Notice how this262

weighting scheme smoothes completely the contribution of points far from263

the point of interest. Therefore, only points within a distance of ±5 pixels264

have a significant influence in the whole descriptor.265
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The upright version of SURF-based descriptors (U-SURF) is faster to266

compute and usually exhibits higher performance (compared to their corre-267

sponding rotation invariant version, SURF) in applications where invariance268

to rotation is not necessary. Some examples of these applications are 3D269

reconstruction [5] or face recognition [31]. Although the MU-SURF descrip-270

tor is not invariant to rotation, it can be easily adapted for this purpose by271

interpolating Haar wavelet responses according to a dominant orientation in272

the same way as is done in the orginal SURF descriptor.273

(a) (b)

Figure 3: (a) MU-SURF descriptor building process. All sizes are relative to the scale of

the feature. (b) The single Gaussian weighting scheme proposed in the original SURF de-

scriptor. Normalized 2D gaussian kernel values considering a Gaussian kernel of standard

deviation σ = 3.3 centered at the interest keypoint. Best viewed in color.

5. Gauge-SURF Descriptors274

Our family of G-SURF descriptors is based on the original SURF descrip-275

tor. However, instead of using the local first-order derivatives Lx and Ly, we276

replace these two derivatives by the second-order gauge derivatives Lww and277

14



Lvv. For computing multiscale gauge derivatives, we always need to compute278

the derivatives first in the Cartesian coordinate frame (x, y), and then fix the279

gradient direction (Lx, Ly) for every pixel. After these computations, we can280

obtain invariant gauge derivatives up to any order and scale with respect to281

the new gauge coordinate frame (~w,~v).282

From the definition of gauge coordinates in Equation 1, it can be observed283

that these coordinates are not defined at pixel locations where
√

L2
x + L2

y = 0,284

i.e. at saddle points and extrema of the image. In practice this is not a285

problem as ter Haar Romeny states in [4], since we have a small number286

of such points, and according to Morse theory [32] we can get rid of such287

singularities by infinitesimally small local changes in the intensity landscape.288

What we do in practice is to not sum the contributions of these points into289

the final descriptor vector.290

Now, we will describe the building process of a GU-SURF descriptor of291

dimension 64. For a detected feature at scale s, we compute first and second-292

order Haar wavelet responses Lx, Ly, Lxx, Lxy, Lyy over a 20s × 20s region.293

We call Lx the Haar wavelet response in the horizontal direction and Ly the294

response in the vertical direction. The descriptor window is divided into 4×4295

regular subregions without any overlap. Within each of these subregions296

Haar wavelets of size 2s are computed for 25 regularly distributed sample297

points. Once we have fixed the gauge coordinate frame for each of the pixels,298

we compute the gauge invariants |Lww| and |Lvv|. Each subregion yields a299

four-dimensional descriptor vector dv = (
∑

Lww,
∑

Lvv,
∑ |Lww|,

∑ |Lvv|).300

Finally, the total length of the unitary descriptor vector is 64.301

Figure 4 depicts an example of the GU-SURF descriptor building process.302
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For simplicity reasons, we only show one gauge coordinate frame for each of303

the 4× 4 subregions. Note that if we want to compute a descriptor which is304

invariant to rotation, we do not need to interpolate the value of the invariants305

Lww and Lvv according to a dominant orientation as in SURF or M-SURF.306

Due to the rotation invariance of gauge derivatives, we only have to rotate307

the square grid.

Figure 4: GU-SURF descriptor building process. Note that for the rotationally-invariant

version of the descriptor we just have to rotate the square grid.

308

In the same way as proposed in SURF, we use box-filters to approximate309

first and second-order Gaussian derivatives. These box-filters are constructed310

through the use of integral images [15], which allows the approximation of311

Gaussian derivatives with low computational demands.312

In Section 5.1, we describe the rest of descriptors of the G-SURF family313

included in the OpenGSURF library and the notation of the descriptors we314

will use throughout the rest of the paper.315
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5.1. Descriptors Notation316

Similar to [5], we can modify the number of divisions of the square grid317

and the size of each subregion in Figure 4 to obtain descriptors of different318

dimensions. The descriptor size has a major impact on the matching speed319

and recall rates. We also tested the extended version of the descriptors [5].320

Due to space limitations, we will not evaluate this version of the descriptors321

in this paper. However, this option is included in the OpenGSURF library.322

As shown in [5], the overall effect of the extended descriptor is minimal.323

Now, we will describe the notation for the set of descriptors we use324

throughout the rest of the paper, with the number of dimensions of the325

descriptors in parenthesis. For the SURF-based descriptors the default di-326

mension is 64, whereas for SIFT the default dimension is 128.327

• SURF (64): Original SURF implementation as described in [33] that328

uses a single Gaussian weighting scheme of a standard deviation σ =329

3.3s centered at the interest keypoint and a square grid of 20s× 20s.330

• M-SURF (64): Modified-SURF descriptor as described in [16]. This331

descriptor uses a square grid of 24s×24s considering an overlap of Haar332

wavelets responses and two Gaussian weighting steps.333

• G-SURF (64): Gauge-SURF descriptor, that uses second-order mul-334

tiscale gauge derivatives and a square grid of 20s × 20s without any335

additional Gaussian weighting step.336

• MG-SURF (64): Modified Gauge-SURF descriptor, that uses the337

same scheme as the M-SURF but replacing first-order local derivatives338

(Lx, Ly) for second-order gauge ones (Lww, Lvv).339
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• NG-SURF (64): No Gaussian Weighting-SURF descriptor. This de-340

scriptor is exactly the same as the original SURF descriptor, with the341

difference that no Gaussian weighting step is applied. In this way, we342

can perform a fair comparison between gauge derivatives and first-order343

local derivatives based descriptors without any additional weighting344

scheme.345

• SIFT (128): The SIFT descriptor as described in [14]. This descriptor346

has a dimension of 128.347

For all the descriptors mentioned above, we denote the upright version348

of the descriptors (not invariant to rotation) by adding the prefix U to the349

name of the descriptor. For example, GU-SURF is the upright version of the350

G-SURF descriptor. By modifying the number of divisions of the square grid351

and the size of each of the subregions, we can obtain descriptors of different352

dimensions. Now, we will describe the number of divisions of the square grid353

and the size of each subregion for each of the descriptor sizes we evaluate in354

this paper. The first number in parenthesis indicates the dimension of the355

descriptor with the new square grid and subregion size.356

• (36): Square grid of size 18s × 18s yielding 3 × 3 subregions each of357

size 6s× 6s.358

• (144): Square grid of size 24s× 24s yielding 6× 6 subregions each of359

size 4s× 4s.360
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6. Results and Discussion361

In this section, we present extensive experimental image matching results362

obtained on the standard evaluation set of Mikolajczyk and Schmid [9], large-363

scale 3D SfM applications [10] and visual categorization experiments [2]. In364

addition, we introduce a new dataset named Iguazu that consist of a series365

of six images with the addition of increasing random Gaussian noise levels366

with respect to the first image of the dataset. In some research areas such367

medical imaging, RADAR or astronomy, images are usually corrupted by368

different types of random noise. Therefore, we think that the evaluation of369

local descriptors in these kind of datasets is of interest.370

Our family of G-SURF descriptors implementation is based on the Open-371

SURF library1. The source code of our library is attached as supplementary372

paper material. OpenSURF is an open source C++ based library with de-373

tailed documentation and a reference paper [12]. To our knowledge, this374

library is widely used in the computer vision and robotics community and375

exhibits good perfomance, while having speed similar to the original SURF376

library which is only available as a binary. Currently, OpenSURF uses by377

default the M-SURF descriptor, since perfomance is much higher than when378

using the single weighting Gaussian scheme. We think that OpenSURF is a379

good open source library for perfoming an evaluation and comparison of a380

set of descriptors that are all based on the same source code framework.381

We also show comparison results with respect to SIFT descriptor, using382

Vedaldi’s implementation [13]. In all SIFT experiments we used the default383

1Available from http://code.google.com/p/opensurf1/
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magnification factor m = 3.0, i.e. each spatial bin of the histogram has384

support of size m · σ where σ is the scale of the point of interest. This385

parameter has an important effect in descriptor performance. See [34] for386

more details.387

We have compared G-SURF descriptors to SURF, M-SURF, NG-SURF388

(all based on OpenSURF implementation) and SIFT (based on Vedaldi’s389

implementation), in both standard and upright forms. Agrawal et al. [16]390

claim that M-SURF’s performance is similar to the original SURF library,391

although their implementation is much faster than the original one. Like392

Agrawal et al., we also noticed that the standard single Gaussian weighting393

scheme as proposed in the original SURF algorithm [5] gives poor results.394

However, we also include in our comparison the standard SURF method395

based on the OpenSURF implementations, since this single Gaussian scheme396

is still used in practically all of the open source libraries that include the397

SURF algorithm, such as OpenCV or dlib C++ 2. In addition, in Section 6.2398

we also show some comparison results with respect to the OpenCV SURF399

implementation, since this library has become a de facto standard for fast-400

to-compute descriptors.401

The rest of the experimental results and discussion section is organized as402

follows: In Section 6.1 we show extensive image matching experiments based403

on the standard evaluation framework of Mikolajczyk and Schmid [9], with404

the addition of a new dataset for evaluating descriptor performance under405

different image noise settings. Then, in Section 6.3 we evaluate the perfor-406

2Available from http://dclib.sourceforge.net/
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mance of G-SURF descriptors in large-scale 3D SfM scenarios. In Section 6.4407

we show some results on visual categorization applications, and finally in408

Section 6.5 we describe some implementation details and timing evaluation409

results.410

6.1. Image Matching Experiments411

We tested our descriptors using the image sequences and testing software412

provided by Mikolajczyk 3. We used OpenSURF’s Fast Hessian to extract413

the keypoints in every image and then compute the descriptors, setting the414

number of octaves and number of intervals to 4 and 2 respectively.415

The standard dataset includes several image sets (each sequence generally416

contains 6 images) with different geometric and photometric transformations417

such as image blur, lighting, viewpoint, scale changes, zoom, rotation and418

JPEG compression. In addition, the ground truth homographies are also419

available for every image transformation with respect to the first image of420

every sequence. We show results on eight sequences of the dataset. Table 1421

gives information about the datasets and the image pairs we evaluated for422

each of the selected sequences. We also provide the number of keypoints de-423

tected for each image and the Hessian threshold value to permit reproduction424

of our results.425

Descriptors are evaluated by means of recall versus 1 - precision graphs426

as proposed in [9]. This criterion is based on the number of correct matches427

3Available from http://www.robots.ox.ac.uk/ṽgg/research/affine/
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and the number of false matches obtained for an image pair:428

recall = #correct matches

#correspondences

1− precision = #false matches

#all matches

(7)

The number of correct matches and correspondences is determined by the429

overlap error. Two regions (A,B) are deemed to correspond if the overlap430

error ǫ0, defined as the error in the image area covered by the regions, is431

sufficiently small, as shown in Equation 8:432

ǫ0 < 1− A ∩HT ·B ·H
A ∪HT ·B ·H (8)

In [9] there were shown some examples of the error in relative point location433

and recall considering different overlap errors. They found that for overlap434

errors smaller than 20% one can obtain the maximum number of correct435

matches. In addition, they showed that recall decreases with increasing over-436

lap errors. Larger overlap errors result in a large number of correspondences437

and general low recall. Based on this, we decided to use an overlap error438

threshold of ǫ0 < 20%, since we think this overlap error is reasonable for SfM439

applications, where you are only interested in very accurate matches. Fur-440

thermore, as in [35] we also impose that the error in relative point location for441

two corresponding regions has to be less than 2.5 pixels: ‖xa −H · xb‖ < 2.5,442

where H is the homography between the images. Due to space limitations,443

we only show results on similarity threshold based matching, since this tech-444

nique is better suited for representing the distribution of the descriptor in its445

feature space [9].446

Figure 5 depicts recall versus 1-precision graphs for the selected pairs of447

images. This figure suggests the following conclusions:448
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(a) (b) (c)

(d) (e) (f)

Figure 5: Image matching experiments: Recall versus 1-precision graphs, Similarity thresh-

old based matching. (a) Bikes 1 vs 4. (b) Boat 1 vs 4. (c) Leuven 1 vs 5. (d) Trees 1 vs

3. (e) UBC 1 vs 5. (f) Wall 1 vs 3. Best viewed in color.
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Dataset Image Image N # Keypoints # Keypoints Hessian

Change Image 1 Image N Threshold

Bikes Blur 4 2275 1538 0.0001

Bikes Blur 5 2275 1210 0.0001

Boat Zoom+Rotation 4 2676 1659 0.0001

Graffiti Viewpoint 2 1229 1349 0.001

Leuven Illumination 5 2705 2009 0.00001

Trees Blur 3 3975 4072 0.0001

UBC JPEG Compression 5 2106 2171 0.0001

Van Gogh Rotation 10 864 782 0.00005

Van Gogh Rotation 18 864 855 0.00005

Wall Viewpoint 3 3974 3344 0.0001

Iguazu Gaussian Noise 3 1603 2820 0.0001

Iguazu Gaussian Noise 4 1603 3281 0.0001

Iguazu Gaussian Noise 5 1603 3581 0.0001

Table 1: Sequences and image pairs used for image matching experiments: Image change,

image number, keypoints number and Hessian threshold value.

• In general, among the upright evaluation of the descriptors, GU-SURF449

descriptors perform much better than their competitors, especially for450

high precision values, with sometimes more than 20% improvement in451

recall for the same level of precision with respect to MU-SURF (64)452

and U-SIFT (128) (e.g. Leuven, Bikes and Trees datasets), and even453

much more improvement with respect to U-SURF (64). GU-SURF454

(144) was the descriptor that normally achieved the highest recall for455

all the experiments, followed close by GU-SURF (64). GU-SURF (36)456

also exhibits good performance, on occasions even better than higher457

dimensional descriptors such as U-SIFT (128) or MU-SURF (64).458

• In the upright evaluation of the descriptors, one can obtain higher recall459

rates by means of descriptors that do not have any kind of Gaussian460

weighting or subregions overlap. For example, we can observe this effect461

between NGU-SURF (64) and U-SURF (64), where the only difference462
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between both descriptors is the Gaussian weighting step. Furthermore,463

we can see that between GU-SURF (64) and MGU-SURF (64), GU-464

SURF (64) obtained higher recall values than when using the modified465

version of the descriptors.466

• With respect to the rotation invariant version of the descriptors, in467

these cases the modified descriptor version plays a more important role.468

The use of two Gaussian weighting steps and subregions overlap yields469

a more robust descriptor with respect to large geometric deformations470

and non-planar rotations. In addition, the Gaussian weighting helps in471

reducing possible computation errors when interpolating Haar wavelets472

responses according to a dominant orientation. This interpolation of473

the responses is not necessary in the case of gauge derivatives, since474

by definition they are rotation invariant. We can observe that MG-475

SURF (64) obtained slightly better results compared to M-SURF (64)476

and SIFT (128) for the Boat dataset (Zoom+Rotation). For the Wall477

dataset (changes in viewpoint), SIFT (128) was the descriptor that478

obtained the best results, and MG-SURF (64) obtained better results479

compared to M-SURF (64), especially for high precision values.480

• When comparing gauge-based descriptors and first-order local deriva-481

tives descriptors, we can observe that gauge-based descriptors always482

obtained higher recall values, both in the standard and upright form of483

the descriptors. We can observe this behaviour between G-SURF (64)484

versus NG-SURF (64), and MG-SURF (64) versus M-SURF (64) and485

also depending on the upright version of the descriptors. One of the486

25



reasons why gauge derivatives obtained better performance is because487

they are intrinsically weighted by the strength of the gradient Lw per488

pixel, and thus the resulting decriptor exhibits a higher discriminative489

power.490

• In all the sequences the worst results were obtained by OpenSURF’s491

SURF implementation, which uses the single Gaussian weighting scheme492

that gives poor results.493

6.1.1. Evaluation under image noise transformations494

In this section, we evaluate the performance of the descriptors under im-495

age noise transformations. For this purpose, we created a new dataset named496

Iguazu. This dataset consists of 6 images, and the image transformation in497

this case is the progressive addition of random Gaussian noise. For each pixel498

of the transformed images, we add random Gaussian noise with increasing499

variance considering grey scale value images. The noise variances for each500

of the images are the following: Image 2 ±2.55, Image 3 ±12.75, Image 4501

±15.00, Image 5 ±51.0 and Image 6 ±102.00, considering that the grey value502

of each pixel in the image ranges from 0 to 255. This new dataset is available503

as supplementary paper material. Noisy images are very common in fields504

such as biomedical imaging [4] and other research areas such as Synthetic505

Aperture RADAR imaging (SAR) [36]. We think that for these applications,506

a descriptor which is robust to different noise settings is very desirable. Fig-507

ure 6 depicts three images of the Iguazu dataset for image random noise508

transformations, and the recall versus 1-precision for three image pairs of509

the sequence.510
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(a) (b) (c)

(d) (e) (f)

Figure 6: In the first row (a,b,c), we show some images from the Iguazu dataset, with

incremetally increasing random Gaussian noise values per image. Notice that when severe

random noise is added to the image, the number of detected blobs increases, mainly at

small scales. The detected keypoints are shown in red or blue depending on the sign

of the Laplacian. (a) Iguazu 1 (b) Iguazu 3 (c) Iguazu 5. In the second row (d,e,f),

Image matching experiments: Recall versus 1-precision graphs, Similarity threshold based

matching. (d) Iguazu 1 vs 3 (e) Iguazu 1 vs 4 (f) Iguazu 1 vs 5. Best viewed in color.
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According to the graphs, we can observe that for this dataset, the dif-511

ference between gauge-derivatives and first-order local derivatives based de-512

scriptors is much more significant than in the previous image transformations513

evaluation. The best results were obtained again with the GU-SURF (144)514

descriptor. In this experiment, U-SIFT (128) obtained also good results,515

with higher recall values than MU-SURF (64), U-SURF (64) and NGU-516

SURF (64). Notice that in these experiments, GU-SURF (36) obtained bet-517

ter results for the three image pairs than MU-SURF (64), U-SURF (64) and518

NGU-SURF (64). This is remarkable, due to the low dimension of the de-519

scriptor, and this clearly demonstrates the disciminative properties of gauge520

derivatives against first-order ones. The main reason why G-SURF descrip-521

tors exhibit good performance against image noise settings and higher recall522

rates compared to first-order local derivatives methods is because G-SURF523

descriptors measure information about the amount of blurring (Lww) and524

details or edge enhancing (Lvv) in the image at different scale levels.525

6.1.2. Evaluation under pure rotation sequences526

One of the nicest properties of gauge derivatives is their invariance against527

rotation. In this section, we compare G-SURF descriptors against first-order528

local derivatives descriptors, to highlight the rotation invariance properties529

of gauge derivatives. For this purpose, we decided to use the Van Gogh530

sequence that consists of pure rotation image transformations. This sequence531

and the ground truth homographies relating the images can be downloaded532

from Mykolajczyk’s older webpage4. In order to show the performance of533

4http://lear.inrialpes.fr/people/mikolajczyk/Database/rotation.html
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G-SURF descriptor under pure rotation transformation, we evaluated two534

image pairs from the Van Gogh sequence. Figure 7 depicts the reference535

image and the other two images that are related by a pure rotation of 90◦536

and 180◦ with respect to the reference image.

(a) Image 2 (b) Image 10 (c) Image 18

Figure 7: Van Gogh rotation dataset. Images 2 and 10 are related by a pure rotation of

90◦, whereas Images 2 and 18 are related by a pure rotation of 180◦.

537

Figure 8 depicts the recall versus 1-precision for the selected image pairs538

from the Van Gogh dataset. In this experiment, we compared only G-SURF539

(64) versus NG-SURF (64) and SURF (64). According to the results, we can540

observe that for some points in the graphs, by using G-SURF (64) there is an541

improvement in recall of about the 20% with respect to NG-SURF (64) and542

approximately double 40%, with respect to SURF (64) for the same preci-543

sion values. These results highlight the effect of the nice rotation invariance544

property of gauge-derivatives in the matching capabilities of the descriptors.545

6.2. Comparison to OpenCV546

In this section, we also compare our G-SURF descriptors with the lat-547

est OpenCV5 implementation of the SURF descriptor. According to [37],548

5Available from http://sourceforge.net/projects/opencvlibrary/
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(a) (b)

Figure 8: Image matching experiments: Recall versus 1-precision graphs, Similarity thresh-

old based matching. (a) Van Gogh 2 vs 10 (b) Van Gogh 2 vs 18. Best viewed in color.

OpenCV’s SURF implementation has become a de facto standard for fast-549

to-compute descriptors. However as we will show in our results, the descrip-550

tor performance is poor and much lower compared to OpenSURF’s default551

M-SURF descriptor. This low performance is because the SURF implemen-552

tation in OpenCV uses also the single Gaussian weighting scheme as proposed553

in the original SURF paper [5].554

Figure 9 depicts recall versus 1-precision graphs for two image pairs from555

the Bikes and Graffiti datasets. In this experiment, we compare G-SURF (64)556

with respect to M-SURF (64), SURF (64) and CV-SURF (64) both in the557

upright and standard forms of the descriptors. We denote by CV-SURF the558

OpenCV implementation of the SURF descriptor using the single weighting559

scheme as described in Section 4. According to the results, we can see that560

the OpenCV implementation gives poor results, comparable to SURF (64)561

in OpenSURF’s implementation, since both algorithms use the mentioned562

single Gaussian weighting scheme. We can appreciate a huge difference in563

recall with respect to G-SURF (64) and M-SURF (64).564
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(a) (b)

Figure 9: Image matching experiments: Recall versus 1-precision graphs, Similarity thresh-

old based matching. (a) Bikes 1 vs 5 (b) Graffiti 1 vs 2. Best viewed in color.

6.3. Application to 3D Structure from Motion565

In this section, we evaluate the performance of G-SURF based descriptors566

in large-scale 3D SfM applications. In particular, we use the learning local567

image descriptors dataset from [10]. In the mentioned work, Brown et al.568

proposed a framework for learning dense local image descriptors from training569

data using 3D correspondences from large-scale SfM datasets. For generating570

ground truth image correspondences between real interest points, the authors571

used multi-view stereo matching techniques [24, 25] that allow very accurate572

correspondences between 3D points to obtained.573

The available dataset consists of several scale and orientation normalized574

64×64 image patches centered around detected Harris corners or Difference575

of Gaussian (DoG) [14] features. Those patches were extracted from real 3D576

points of large-scale SfM scenarios. In our evaluation, we used 40,000 patch577

pairs centered on detected Harris corners from which 50% are match pairs578

and the other 50% are considered non-match pairs. We attach the set of579

matches/non-matches image patches used for the evaluation as supplemen-580

tary material of the paper. In the evaluation framework of Brown et al.,581
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two patches are considered to be a match if the detected interest points are582

within 5 pixels in position, 0.25 octaves in scale and π/8 radians in angle.583

Figure 10 depicts some of the pre-defined match, non-match pairs from the584

Liberty dataset.585

(a) (b)

Figure 10: Some of the predefined match, non-match pairs from the Liberty dataset. Each

row shows 3 pairs of image patches and the two image patches in each pair are shown in

the same column. (a) Match pairs. (b) Non-match pairs.

We performed an evaluation of the upright version of the descriptors U-586

SURF (64), MU-SURF (64), GU-SURF (64), MGU-SURF (64), NGU-SURF587

(64) and U-SIFT (128) for both the Liberty and Notre Dame datasets. We588

chose a scale of 2.5 pixels to make sure that no Haar wavelet responses were589

computed outside the bounds of the image patch. For all the image pairs590

in the evaluation set, we computed the distance between descriptors and by591

means of sweeping a threshold on the descriptor distance we were able to592

generate ROC curves. Figure 11 depicts the ROC curves for the Liberty593

dataset, whereas Figure 12 depicts the ROC curves for the Notre Dame594

dataset.595

In addition, in Table 2 we also show results in terms of the 95% error rate596

which is the percentage of incorrect matches obtained when the 95% of the597
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Figure 11: ROC curves for local image descriptors. Liberty dataset. Best viewed in color.

Figure 12: ROC curves for local image descriptors. Notre Dame dataset. Best viewed in

color.
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true matches are found.598

Descriptor Liberty Notre Dame

GU-SURF (64) 19.78 18.95

MGU-SURF (64) 12.55 10.19

NGU-SURF (64) 22.95 25.22

MU-SURF (64) 16.88 13.17

U-SURF (64) 36.49 34.18

U-SIFT (128) 21.92 17.75

Table 2: Local image descriptors results. 95% error rates, with the number of descriptor

dimension in parenthesis.

According to the results, we can observe that the lowest incorrect match599

fraction rate for the 95% recognition rates was obtained by the MGU-SURF600

(64) descriptor. This descriptor uses the same square grid configuration,601

two Gaussian weighting steps and subregions overlap as proposed in [16] for602

the MU-SURF descriptor. In typical large-scale 3D SfM scenarios, there603

exist non-planar transformations and illumination changes resulting from604

viewing a truly 3D scene [10]. In addition, second-order derivatives are more605

sensitive to perspective or affine changes than first-order ones. Therefore,606

on those scenarios where the affine changes or changes on perspective are607

significant, the two-steps Gaussian weighting and subregions overlap seem to608

have a good effect on the descriptor performance. This is the reason why609

in this evaluation we obtained better results for MGU-SURF (64) and MU-610

SURF (64) against GU-SURF (64) and NGU-SURF (64), which do not use611

any kind of subregion overlap or Gaussian weighting steps. U-SIFT (128)612
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also obtained good results, always better than NGU-SURF (64) and very613

similar results compared to GU-SURF (64), slightly better for the Notre614

Dame dataset. U-SIFT (128) also uses biliner interpolation between the615

bins of the descriptor histogram [14]. When comparing gauge-derivatives616

based descriptors and first-order local derivatives ones, without any subregion617

overlap nor any Gaussian weighting step, we can observe that GU-SURF (64)618

obtained much better results than NGU-SURF (64). As expected, the worst619

results were obtained for the U-SURF (64) descriptor, since in this descriptor620

configuration the single Gaussian weighting step smoothes to a very high621

degree the descriptor information, yielding lower recognition rates.622

Besides, in the OpenGSURF library, the user can choose between the623

SIFT-style clipping normalization or unit vector normalization of the descrip-624

tor. This normalization can a have a big impact on the matching performance625

of the descriptors, as demonstrated in [38, 10], where one can obtain lower626

error rates by using the SIFT-style clipping normalization. However, in order627

to avoid the influence of this normalization style in our results, we just show628

results using the standard unit vector normalization, except for the SIFT629

descriptor, in which we use its default SIFT-style clipping normalization.630

6.4. Application to Visual Categorization Problems631

In this experiment, we show that G-SURF based descriptors can be used632

efficiently in typical visual image categorization or object recognition prob-633

lems. Bay et al. have shown in previous work [39, 33, 5] that SURF-based634

descriptors can be used efficiently in this kind of applications. Nowadays,635

SURF or SIFT invariant descriptors are of common use in typical visual cat-636

egorization or object recognition schemes [2]. In a similar way to [40], we637
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performed our tests using the Caltech faces, airplanes and camels dataset 6.638

Firstly, we resized all the images to a 640×480 resolution and selected 25% of639

all the images (randomly distributed among the three categories) for training.640

The rest of the images were used for test evaluation.641

Even though this is a simple visual categorization problem, we want to642

evaluate if G-SURF based descriptors can exhibit higher recognition rates643

than traditional first-order spatial derivatives based approaches due to the644

extra invariance offered by using gauge derivatives. Figure 13 depicts three645

image pairs of the different categories that we used in our evaluation. In646

particular, we can expect higher confusion between the faces and camels647

categories. This is because in some images of the camels dataset we can648

observe some human faces as shown for example in Figure 13(f), and also649

that camel and human faces share some degree of similarity.650

In order to perform an evaluation of the different local descriptors, we651

used our own implementation of the visual bag of keypoints method de-652

scribed in [2]. This implementation has been successfully tested before in an653

occupant monitoring system based on visual categorization [41]. Basically,654

we used the standard Fast-Hessian detector to detect features of interest at655

different scale levels, and then we computed different local descriptors. In656

this experiment, we only show a comparison between 64 dimensional descrip-657

tors in their upright form (U-SURF, MU-SURF, GU-SURF, NGU-SURF).658

Once the descriptors are extracted, the visual vocabulary is constructed by659

means of the standard k-means clustering scheme [42]. This clustering al-660

6http://www.vision.caltech.edu/html-files/archive.html
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(a) (b) (c)

(d) (e) (f)

Figure 13: Three pairs of images from the Caltech dataset. (a,d) Faces. (b,e) Airplanes.

(c,f) Camels. Notice the possible confusion between the faces and camels categories.

gorithm proceeds by iterated assignments of keypoints descriptors to their661

closest cluster centers and recomputation of the cluster centers. The selec-662

tion of the number of clusters and the initialization of the centers are of great663

importance in the performance of the algorithm. Finally, the visual catego-664

rization is done by using a simple Näive Bayes classifier [43]. In order to665

reduce the influence of the clustering method on the final results, we decided666

to use a small number of clusters k = 20 and performed a random initial-667

ization of the cluster centers. To avoid cluster initialization problems, the668

clusters were randomly initialized ten times in each of the experiments, re-669

porting categorization results just for the cluster initialization that obtained670

minimum compactness measure.671

Tables 3, 4, 5, 6 show information about the performance of each of the672

different descriptors in the test evaluation. Similar to [2], we used three per-673
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formance measures to evaluate the performance in visual categorization: the674

confussion matrix, the overall error rate and the mean ranks. For more in-675

formation about the meaning of these performance measures, we recommend676

the reader to check the experiments section in [2].

True Classes Faces Airplanes Camels

Faces 82.6531 0.8714 19.0000

Airplanes 1.3605 91.5033 12.0000

Camels 15.9864 7.6252 69.0000

Mean Ranks 1.1973 1.1154 1.3100

Overall Error Rate 0.1352

Table 3: Confusion matrix, mean ranks and overall error rate for U-SURF (64).

True Classes Faces Airplanes Camels

Faces 79.2517 0.3267 25.5000

Airplanes 0.6802 93.6819 7.0000

Camels 20.0680 5.9912 67.5000

Mean Ranks 1.2142 1.0824 1.3250

Overall Error Rate 0.1303

Table 4: Confusion matrix, mean ranks and overall error rate for MU-SURF (64).

677

With respect to the confussion matrix, we can observe that GU-SURF678

(64) descriptor obtained higher recognition rates for the faces (85.3741%)679

and camels (72.0000%) categories. However, the MU-SURF (64) descriptor680
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True Classes Faces Airplanes Camels

Faces 85.3741 0.2178 22.5000

Airplanes 0.3401 91.8301 5.5000

Camels 14.2857 7.9520 72.0000

Mean Ranks 1.1564 1.1132 1.2800

Overall Error Rate 0.1232

Table 5: Confusion matrix, mean ranks and overall error rate for GU-SURF (64).

True Classes Faces Airplanes Camels

Faces 80.6122 0.3267 20.0000

Airplanes 1.36054 93.3551 10.0000

Camels 18.0272 6.31808 70.0000

Mean Ranks 1.2074 1.0882 1.3

Overall Error Rate 0.1260

Table 6: Confusion matrix, mean ranks and overall error rate for NGU-SURF (64).
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obtained a higher recognition rate for the airplanes (93.68%) dataset. In681

the same way, GU-SURF (64) obtained the lowest mean ranks for the faces682

(1.1564) and camels (1.2800) datasets and MU-SURF (64) obtained the low-683

est one for the airplanes dataset (1.0824). Regarding the overall error rate,684

GU-SURF (64) was the descriptor that achieved the lowest error (0.1232).685

There is a reduction in the overall error rate of 8.88% with respect to U-686

SURF (64), 5.45% with respect to MU-SURF (64) and 2.22% with respect687

to NGU-SURF (64). Even though the experimental evaluation was a simple688

visual categorization problem, we can conclude that G-SURF based descrip-689

tors can be used efficiently in these visual recognition schemes. In addition,690

G-SURF descriptors can also obtain lower error rates and higher recognition691

rates than traditional approaches that are based only on first-order local692

derivatives.693

6.5. Implementation Details and Timing Evaluation694

In this section, we describe some implementation details of G-SURF de-695

scriptors and perform a timing evaluation. One of the criticisms about using696

second-order derivatives in the context of local descriptors, is the higher697

computational cost that sometimes is not accompanied by a better perfor-698

mance. In this section, we show that by means of using gauge derivatives699

we can obtain much better performance than first-order based methods with700

comparable computational cost. Table 7 shows timing results for descriptor701

computation and also the number of the most important operations in the702

process of building the upright SURF based descriptors. All timing results703

were obtained on an Intel i7 2.8GHz computer.704

In Table 7, the number of integral image areas means the number of705
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Case U-SURF MU-SURF MGU-SURF GU-SURF GU-SURF GU-SURF

Dimension 64 64 64 36 64 144

# First-Order Wavelets 800 2592 2592 648 800 1152

# Second-Order Wavelets 0 0 3888 972 1200 1728

# Gaussian Weights 800 2608 0 0 0 0

Square area 20 × 20 24 × 24 24 × 24 18 × 18 20 × 20 24 × 24

# Integral Image Areas 1600 5184 15552 3888 4800 6912

Time (ms) 0.03 0.16 0.30 0.06 0.07 0.10

Table 7: Descriptor Building Process: Number of operations, square area and average

computation time per descriptor keypoint.

areas that we have to obtain in order to compute the descriptor. Based on706

OpenSURF’s implementation details [12], one can estimate first-order Haar707

wavelets Lx, Ly with just the difference of two areas of the integral image for708

each of the first-order wavelets. For each of the second-order Haar wavelets709

Lxx, Lyy it is necessary to compute two areas of the integral image and sum710

these areas in a proper way. Finally, the most consuming Haar wavelet is711

Lxy, since it requires the computation of 4 areas of the integral image. For712

example, for the U-SURF (64) case, the total number of areas of the integral713

image that we need to compute is: (4 × 4) · (5 × 5) · (2 + 2) = 1600. Due714

to the extra-padding of 2s, the MU-SURF (64) case yields: (4 × 4) · (9 ×715

9) · (2 + 2) = 5184. On the other hand, the GU-SURF (64) case yields:716

(4× 4) · (5× 5) · (2 + 2 + 2 + 2 + 4) = 4800. However, the core observation717

is that for the GU-SURF (64) descriptor one can obtain substantial speed-718

up for those points in the rectangular grid where the gradient is equal to719

zero. For those cases we do not need to compute the second-order wavelets,720

since gauge coordinates are not defined for these points. This corresponds721

to regions of the images of equal value, and therefore these regions are non-722

Morse.723
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Using the same settings as described in Table 1, we can show the fraction724

of non-Morse points among all the points where Haar wavelets were evalu-725

ated. For example, for the following images the ratio is: Leuven Image 1726

(17.96%), Bikes Image 1 (17.73%) and Iguazu Image 1 (32.43%). Another727

computational advantage of the G-SURF descriptor is that it is not neces-728

sary to interpolate the Haar wavelet responses with respect to a dominant729

orientation, since gauge derivatives are rotation invariant.730

As explained above, the number of operations for U-SURF (64) is the731

smallest, yielding a small computation time per descriptor, but the perfor-732

mance is the worst compared to the other SURF-based cases. NGU-SURF733

(64) descriptor has similar computation times to the U-SURF descriptor,734

with the advantage that no Gaussian weighting operations are necessary and735

exhibiting much better performance. The modified version of the descrip-736

tors introduces more computations in the descriptor building process, since737

the square area is 24s × 24s. This yields higher computation times per de-738

scriptor. In particular, for the MGU-SURF (64) descriptor, the number of739

integral image areas is the highest (15552), and also the associated computa-740

tion time per descriptor (0.30 ms). However, this descriptor only offers small741

advantages in performance against GU-SURF (36), GU-SURF (64) and GU-742

SURF (144) when we have sequences with strong changes in viewpoints and743

non-planar rotations (e.g. Wall, Graffiti, Liberty and Notre Dame datasets).744

In addition, GU-SURF (36), GU-SURF (64) and GU-SURF (144) are faster745

to compute than MU-SURF (64) and also exhibit much better performance.746

For the U-SIFT (128) descriptor, we obtained an average computation time747

per keypoint of 0.42 ms. Besides, for any SIFT-based descriptor one needs748
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to compute the Gaussian scale space since the gradients are precomputed for749

all levels of the pyramid [14]. Pre-computing the scale space is a highly con-750

suming task in contrast to the fast integral image computation. We obtained751

a computation time of 186 ms for the SIFT scale space generation, whereas752

for the SURF integral image we obtained 2.62 ms. For the CVU-SURF case,753

we obtained an average computation time per keypoint of 0.05 ms.754

According to these results, it is clear that image matching using the G-755

SURF descriptors can be accomplished in real-time, with high matching per-756

formance. For example, we think that GU-SURF (36) and GU-SURF (64)757

are of special interest to be used efficiently in real-time SfM and SLAM appli-758

cations due to excellent matching performance and computational efficiency.759

7. Conclusions760

We have presented a new family of multiscale local descriptors, a novel761

high performance SURF-inspired set of descriptors based on gauge coor-762

dinates which are easy to implement but are theoretically and intuitively763

highly appealing. Image matching quality is considerably improved rela-764

tive to standard SURF and other state of the art techniques, especially for765

those scenarios where the image transformation is small in terms of change in766

viewpoint or the image transformation is related to blur, rotation, changes in767

lighting, JPEG compression or random Gaussian noise. Our upright descrip-768

tors GU-SURF (64) and GU-SURF (36) are highly suited to SfM and SLAM769

applications due to excellent matching performance and computational ef-770

ficiency. Furthermore, the rotation invariant form of the descriptors is not771

necessary in applications where the camera only rotates around its vertical772

43



axis, which is the typical case of visual odometry [11, 44] or SLAM [45] ap-773

plications. We also showed successful results of our familiy of descriptors in774

large-scale 3D SfM applications and visual categorization problems.775

Another important conclusion that we showed in this paper, is that de-776

scriptors based on gauge-derivatives can exhibit much higher performance777

than first-order local derivatives based descriptors. This is possible, due778

to the extra invariance offered by gauge-derivatives and also our G-SURF779

descriptors have comparable computational cost with respect to other ap-780

proaches.781

As future work we are interested in testing the usefulness of G-SURF782

descriptors for more challenging object recognition tasks (e.g. The PASCAL783

Visual Object Classes Challenge). In addition, we also plan to incorporate784

our descriptors into real-time SfM applications and evaluate them in loop785

closure detection problems such as in [46]. Future work will aim at optimis-786

ing the code for additional speed up and also we will exploit the use of gauge787

coordinates in the detection of features in non-linear scale spaces. More-788

over, we would like to introduce our gauge-based descriptors on a DAISY-789

like framework [47] for performance evaluation on different computer vision790

applications.791

According to the obtained results and other successful approaches such792

as geometric blur, we hope that in the near future we can break with the793

standard scale-space paradigm in computer vision algorithms. In the stan-794

dard scale-space paradigm the true location of a boundary at a coarse scale795

is not directly available in the coarse scale image. The reason for this is796

simply because Gaussian blurring does not respect the natural boundaries797
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of objects. We believe that introducing new invariant features that fully ex-798

ploit non-linear diffusion scale spaces (both in detection and local description799

of features) can represent step forward improvements on traditional image800

matching and object recognition applications.801
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[27] L. Álvarez, F. Guichard, P. Lions, J. M. Morel, Axioms and fundamental871

equations of image processing, Arch. for Rational Mechanics 123 (3)872

(1993) 199–257.873

[28] J. Koenderink, The structure of images, Biological Cybernetics 50 (1984)874

363–370.875

[29] A. Kuijper, Geometrical PDEs based on second-order derivatives of876

gauge coordinates in image processing, Image and Vision Computing877

27 (8) (2009) 1023–1034.878

[30] V. Caselles, J.-M. Morel, C. Sbert, An axiomatic approach to image879

interpolation, IEEE Trans. on Image Processing.880

[31] P. Dreuw, P. Steingrube, H. Hanselmann, H. Ney, SURF-Face: Face881

Recognition under Viewpoint Consistency Constraints, in: British Ma-882

chine Vision Conf. (BMVC), 2009.883

48



[32] J. Damon, Local Morse theory for solutions to the heat equation and884

Gaussian blurring, Journal of Differential Equations 115 (2) (1995) 368–885

401.886

[33] H. Bay, T. Tuytelaars, L. V. Gool, SURF: Speeded up robust features,887

in: Eur. Conf. on Computer Vision (ECCV), 2006.888

[34] A. Vedaldi, An open implementation of the SIFT detector and descrip-889

tor, Tech. Rep. 070012, UCLA CSD (2007).890

[35] K. Mikolajczyk, C. Schmid, Scale and affine invariant interest point891

detectors, Intl. J. of Computer Vision 60 (2004) 63–86.892

[36] R. Liu, Y. Wang, SAR image matching based on speeded up robust893

feature, in: WRI Global Congress on Intelligent Systems, 2009.894

[37] M. Calonder, V. Lepetit, P. Fua, BRIEF: Binary Robust Independent895

Elementary Features, in: Eur. Conf. on Computer Vision (ECCV), 2010.896

[38] G. Hua, M. Brown, S. Winder, Discriminant embedding for local image897

descriptors, in: Intl. Conf. on Computer Vision (ICCV), Rio de Janeiro,898

Brazil, 2007.899

[39] H. Bay, B. Fasel, L. V. Gool, Interactive Museum Guide: Fast and900

Robust Recognition of Museum Objects, in: Proceedings of the first901

international workshop on mobile vision, 2006.902

[40] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsu-903

pervised scale-invariant learning, in: IEEE Conf. on Computer Vision904

and Pattern Recognition (CVPR), 2003, pp. 264–271.905

49



[41] J. Yebes, P. Alcantarilla, L. Bergasa, Occupant monitoring system for906

traffic control based on visual categorization, in: IEEE Intelligent Vehi-907

cles Symposium (IV), 2011.908

[42] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,909

2007.910

[43] D. Lewis, Naive (bayes) at forty: The independence assumption in in-911

formation retrieval, in: Eur. Conf. on Machine Learning (ECML), 1998,912

pp. 4–15.913

[44] M. Kaess, K. Ni, F. Dellaert, Flow separation for fast and robust stereo914

odometry, in: IEEE Intl. Conf. on Robotics and Automation (ICRA),915

Kobe, Japan, 2009.916

[45] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse, MonoSLAM: Real-917

time single camera SLAM, IEEE Trans. Pattern Anal. Machine Intell.918

29 (6).919

[46] A. Angeli, D. Filliat, S. Doncieux, J. A. Meyer, Fast and Incremental920

Method for Loop-Closure Detection using Bags of Visual Words, IEEE921

Trans. Robotics 24 (2008) 1027–1037.922

[47] E. Tola, V. Lepetit, P. Fua, DAISY: An efficient dense descriptor applied923

to wide-baseline stereo, IEEE Trans. Pattern Anal. Machine Intell. 32 (5)924

(2010) 815–830.925

50


	Introduction
	Related Work
	Gauge Coordinates and Multiscale Gauge Derivatives
	Importance of Gauge Derivatives in Non-Linear Diffusion Schemes

	SURF Based Descriptors
	Gauge-SURF Descriptors
	Descriptors Notation

	Results and Discussion
	Image Matching Experiments
	Evaluation under image noise transformations
	Evaluation under pure rotation sequences

	Comparison to OpenCV
	Application to 3D Structure from Motion
	Application to Visual Categorization Problems
	Implementation Details and Timing Evaluation

	Conclusions

