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Abstract In this paper a new model and low level
control system based on state variables theory for the
commercial robotic platform called Pionner 2 has been
developed. We have identified and modelled the robot
from the angular speeds of the wheels. We have con-
trolled the translation and rotation speed of the robot,
the orientation angle and the position increments. We
have used encoders as position sensors. A comparation
between the default model and control proporcioned
by Aria, commercial software of ActivMedia robotics
company, for the Pioneer 2 and our controller, called
Charkos, has been carried out using several tests.

Index Terms Control, mobile robots, states space.

I. INTRODUCTION
NT OWADAYS there are several projects and research

groups working on the development of assistant
robots. In order to contribute to this research field, the
Electronics Department of the University of Alcal is work-
ing on the SIRAPEM project (Spanish acronym of Robotic
System for Elderly Assistance). The goal of this project is
the development of a robotic assistant (called SIRA) which
allows the user to be completely monitored 24 hours a
day and tele-diagnosed from the assistance centers. SIRA
is based on a commercial platform called Pioneer 2 of
ActivMedia Robotics [1]. This is a very popular robot used
as experimental mobile platform by a lot of research groups
in the world. The robot has a differential drive mobile base
and it is composed of four wheels moved by two motors.
Each of theim mnoves the two wheels of its size. SIRA is
endowed with one encoder per motor, bumpers, two sonar
rings (high and low), a 2D laser and a vision system based
on a PTZ (pan-tilt-zoom) color camera connected to a
frame grabber. This paper is focused on a new model
and low control system design for the Pioneer 2 based on
the states space theory and called Charkos. First of all
a review of the main works respecting the design of low
level controllers for the Pionner 2 are presented. Then, a
comparison between our system and the default model and
control proportioned by Aria for the Pioneer 2 and based
on fuzzy logic is carried out. Finally, some conclusions
about the comparison are presented.

II. PREVIOUS WORKS

Focusing the study on the Pioneer 2, there are a lot of
works about control systems using this robot. Diolaiti
N. [2] study the robot movements in unknown indoor
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environments. The system generates a map online that
can change time along. The control system is based on
encoders and ultrasounds. Due to the low level control is
based on odometry the accumulative errors obtained by
the system are very high. Agostino Martinelli [3] models
in robot translation and rotation errors. Lauro Ojeda and
Johann Borenstein [4] describe three methods to reduce
encoders lecture errors. Likewise, the correct calibration of
encoders is based to known the robot position. Stergios
I. et al. [5] use a Kalman filter that works on encoders
data in order to improve position and orientation of the
robot. Zachary Randles et al. [6] control several robots
and the basic behaviour algorithms used are to go to a
goal, to avoid obstacles, to keep a certain distance and
angle among them and to stop. All these actions mean at
last, to control wheels robot angular speed, which is done
by a PID. This is the starting point of our work.

III. IDENTIFICATION
Pioneer 2 robot, from ActivMedia Robotics, which

wheels angular speeds are controlled by a PID, has been
modelled by a system of two equations of order two and it
has been identified by Matlab [7]. The equation, at state
variables is shown in (1).

W(k + 1) = A W(k) + B WREF(k)

being A and B:
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]
the state vector:

[ WR(k)
> ~WL(k)W(k) = R - 1)

WL(k - 1)
that represents right and left wheels angular speeds at

the moment (K) and (K-1) and the inputs:

WREF (k) [ aL REF (k)
that represent rigth and left wheels angular speeds

references at moment (K).
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IV. MOBILE KINEMATIC

A. Robot translation and rotation speeds
If we divide the robot movement in the plane, one into

a translation component and another one into a rotation
component, we will obtain equations (2) and (3), which
represents robot translation and rotation speeds.

VyR WR + WL (2)
2

-*> 180uRI
Q = (WR WL)k (3)wD

R is the wheel radius and D the distance between wheels.
Over the previous equations a state variable change is

done by the transformation matrix MDV:

MDV [
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and also an inverse transformation MIV in the input
reference signals:

[1 1 -1

MIV = -180 _80
wD 7D

VREF (k)

WEF (k)

0(k 0(k)11T ----O0 (k)
V(k)
4k)
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> 4k 1)
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Fig. 2. Orientation angle diagram.

which equation will be:

O(k + 1)
V(k + 1)
Q(k + 1)
V(k)
Q(k) 1

1
0
0
0
0

0 T 0 0 O (k)
V(k)

[AM] V(k-1)
I- J LQ(k -1)

O | VRE 1 (6)

[BM] L QREF (k)
or in a matrix way:

e(k + 1) = Av (k) + Bv VREF(k) (7)

0(k)
V(k)

To control the state vector (9(k) Q(k) it's
V(k -1)
Q(k -1)

been used [8] the blocks diagram shown at figure (3). The

VREF(k) WREF(k) W(k) V(k)

_ MWIV M

VREF (k) g | V(k)
A,, B

Fig. 1. Model of the mobile translation and rotation speeds

The general equation is given by (4).

V(k + 1) = AM V(k) + BM VREF(k) (4)

where
AM = MDV A MDV-1

BM = MDV B MIV

B. Orientation angle 0(k)

Mobile orientation changes during a sampling period in
Q(k) T degrees, so the equation that controls the orienta-
tion is:

O(k + 1) = O(k) + TQ(k) (5)

This equation represents an unstable dinamic system be-
cause its eigenvalue is into the unit circle. The complete
system is depicted in figure (2).

Fig. 3. Control diagram of orientation angle.

control goal has consisted on minimizing the scalar const
function shown in (8).

1
- 1T T

-1

J = [: 6E(k) Q (k) + VREF (k) RVREF(k)I (8)
2

with (k) = (8(k) EREF(k) and the matrixes Q y R
which value is:

5 0 0 0 0
0 1 0 0 0

Q= 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

R Eo1101]

G1 value is calculated by Matlab dlqr function, obtain-
ing:

G1
-0.1587 0.8870 0.5379

G 2.0129 0.2195 2.4687
-0.2468 -0.9817
-0.1455 -0.8023

Gel value is calculated to eliminate the error in steady
state [8], resulting (9).

Ge1 =M1BV \ M1(A -I) (9)
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with M1 = (I -Av + BvG1)-1, so we obtain:

Gei
0 0.0422 0.5379

G 0 0.1759 2.4687
-1.0916 -0.9817
-0.1892 -0.8023

These equations constitute a variable change, MDX,
from [ (k)] to Ax(k) 1 which is no lineal andV(k) j Ay(k) j
variable with -time.

The equation corresponding to the closed loop system
depicted in the figure (3) is:

0 (k+1) = (Av-BvGl)0(k)+Bv(G1-Gel) OREF(k)
(10)

or doing some transformations:

6(k + 1) = ATh 0(k) + BTh EREF(k) (11)
with:

ATh= Av- BvG,
BTh= Bv(Gl -Gel)

We have compared the results obtained from Aria (using
the commands setVel() and setHeadingo) and our system
Charkos for some references as 0 mm/s of translation speed
and orientations of 900, 1800 and 3600. This comparation
can be seen in figure (4). Results obtained from Charkos
are more precise than the obtained from Aria.

Fig. 4. Orientation angle.

C. Position Ax increment
At time k, the mobile is in the position defined by the

coordinates [x(k), y(k)] and it is orientated according to
0(k) angle.

During the sampling period existing from k to k+1, the
vehicle will have covered a space, due to the translation,
with value V(k) T and at the same time, it will have turn
an angle of Q(k) T degrees.
Having in mind that the sampling period is short

(T=100 Ins), orientation angle in a sampling period will
have slightly changed, so we could consider, taking into
account the figure (5), that:

Ax(k) = T V(k) cos O(k)

Ay(k) = T V(k) sin O(k)

(12)

y(k+l) O------(k-1)

Ay(k) AyR(k) .V(k)

x(k) AX(k) X(k+l) X

Fig. 5. Position increments.

Ax(k) = MDX e) (k) (14)

In order to apply position increments references, in
the input directly, it is necessary to introduce a variable
change, inverse to the previous one in the reference signals.
That is to say we have to find the equaations that go froii
AXREF (k) to e REF (k).
The inverse transformation MIX is:

OREF(k) = arctan AYREF(k)
AXREF (k)

VREF(kI=Ax EF(k) + RyEF(k)VREF(k) T

(15)

(16)

1) Position increments limits: As

Ax(k) = T V(k) cos O(k)

Ay(k) = T V(k) sin 0(k)

and taking into account that the highest translation speed
is 800 mm/s, the result is:

Ax2(k) + Ay2 (k) = [TV(k)]2 < (0, 1 .800)2 = 802 (17)
This inequation determines a 80mm radius circle.

D. Control position
As it is shown in figure (5) the mobile coordinates

change depending on the equation:

[ x(k + 1) [x (k) + 1x(k) (18)y(k+1 I y(k) Xy(k)
The system that is wanted to be controller is shown in

figure (6)
XEF(k) (k) 'XF(k) ik XkF(k),0 AX(kiq MIXATh, '3fh MDX x(k1~~#) x(k) +Ax(k) Xk

Fig. 6. Control position.

where the subsystem MIX, ATH, BTH y MDX is
(13) already controlled and their equations are not linear.
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If it is consider that £2(k) error is, precisely, a position
increment, if it is transformed by a G2 attenuator in order
to be into the limits, which have been established in the
previous paragraph, the system would be controlled.

If AXREF(k) G2 £2(k) is out of 80mm radius circle
the reference could not be tracked. In order to avoid it,
the gain variable with the time G2(k) is used. It will have
to carry out the inequation (17), which is the same as:

921 [x(k)- XREF(k)]2+g22 [(k) yREF(k)] <802 (19)
Supposing that g1j= 922= g the result is:

g(k) <
80

j[x(k)- XREF(k)] + [y(k)-
So we obtain:

G2(k) g[ko (k

When the position is so far away from
gain will be small and the increment alw~
mm circle. When it is approching:

x(k)- XREF(k) -> 0

the gain would tend to infinity. To av
obtained position is into a 5 cm radius cir
is in the reference position, a stop order
The results obtained from Aria and C

and Y coordenates in order to follow the t
by XREF(k) = Omm e YREF(k) = Ott
1000mm, YREF(k) = 1000mm), (XREF
YREF(k) = Omm) and (XREF(k) = On
Omm) is shown in figure (7).

o -Gs~

XREF(k) X £(k) OMIX(k) ](k) | VRFF(k)

IW

W>F(k)

X-(k) XM Dk(k)8

X(k) 0\t@(k[c) V(k)

Fig. 8. General block diagram.

the case of the position, Charkos is also more precise in
(20) the trajectory tracking than Aria. The highest deviation

(20() error for Charkos in X coordinate is 30 cm, while for Aria
YREF(k)] is 140 cm. Respecting the goal point, Charkos' deviation,

in X coordenate, is 9 cm, while Aria's is 30 cm. In the
case of Y coordenate, Charkos' highest deviation is 15 cm,

(21) and Aria's is 40 cm. Respecting the goal point, Charkos'
deviation is 6 cm and Aria's is 35 cm. The transient

the reference, the response is in both cases similat respecting to the settling
ays be into the 80 time, but the overshoots are rather so much bigger in Area

than in Charkos. To sum up, Charkos' algorithms based
on classic control in state variables, give more accuracy
than Aria's commercial algorithms, specially respecting
the error in the orientation angle, due to the fact it's being

oid it, when the accumulative as function of time. Then, the position errors
cle and the centre can be very significant.
is sent.
/harkos for the X
trajectory defined
xm, (XREF(k) =

(k) = 1000mm,
-m e YREF(k) =
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Fig. 7. Trajectory.

The general blocks diagram that gather all the control
operations made, is indicated in the figure (8).

V. CONCLUSIONS
With Charkos algorithm the orientation obtained with

the Pionner 2 is quite more precise in comparation with
Aria. The error in robot turning 3600 is less than 10
for the Charkos system, while Aria's error is 180 and is
accumulative. Settling time in both cases is equivalent. In
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