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Abstract. The framework of this paper is robot localization inside build-
ings using WiFi signal strength measure. This localization is usually
made up of two phases: training and estimation stages. In the former the
WiFi signal strength of all visible Access Points (APs) are collected and
stored in a database or Wifi map, while in the latter the signal strengths
received from all APs at a certain position are compared with the WiFi
map to estimate the robot location. This work proposes the use of Fuzzy
Classification in order to obtain the robot position during the estimation

stage, after a short training stage where only a few significant WiFi mea-

sures are needed. As a result, the proposed method is easily adaptable

to new environments where triangulation algorithms can not be applied

since the AP physical location is unknown. It has been tested in a real

environment using our own robotic platform. Experimental results are

better than those achieved by other classical methods.

1 Introduction

In the literature, we can find multiples systems proposed and successfully de-
ployed to find the pose of a robot from its physical sensors. These systems are
based on: infrared sensors, computer vision, ultrasonic sensors, laser or radio
frequency (RF) [1]. Within the last group we can find localization systems that
use Wiki signal strength measure. These WiFi systems are attractive for indoor
environments where traditional techniques, such as Global Positioning System
(GPS) [2], fail. One of the main advantages of these systems is that they do not
need to add any extra hardware in the environment.

The signal strength depends on the distance and obstacles between APs and
the robot. Unfortunately, in indoor environments, the WiFi channel is very noisy
and the RF signal can suffer from reflection, diffraction and multipath effect,
which makes the signal strength a complex function of distance [1]. To solve this
problem, it can be used a priori WiFi map, which represents the signal strength
of each AP at certain points in the area of interest (3] [4].

These systems work in two phases: training and estimation of the position.
During the first phase, a WiFi map is built while in the estimation phase, the
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vector of samples received from each access point is compared with thie WiFi
map and the nearest match is returned as the estimated robot location.

Fuzzy Logic (FL) introduced by Zadeh [5] is acknowledged for both its well-
known ability for lingnistic concept modeling and its use i system identification.
The semantic expressivity of fuzzy logic, using linguistic variables {6] and linguis-
tic rules [7]. is quite close to expert natural language. In addition, being universal
approximators (8], fuzzy inference systeins (FIS) ave able to perform non-linear
mappings between inputs and output. FL is especially useful to handle problems
where the available information is vague. This is the typical situation regarding
WiFi localization where measures normally vield incomplete or distorted data.

In this paper we use Fuzzy Classification in the estimation stage to obtain
the estimated robot position. Such classification obtains sceveral benefits over
the classical methods. The most significant advantages are: (1) The robustness
of the built systems which are able to deal with the intrinsic uncertainty of
indoor environments; and (2) the adaptability to new environments where AP
location is indeterminate.

The rest of the paper is organized as follows: Section 2 provides a description
of the proposed Fuzzy Classification system. Section 3 shiows the implementation
and some experimental results, as well as a description of the used test bed.
Finally, the conclusions and future work are described in Section 4.

2 Description of the Fuzzy Classification system

In this section we provide a brief description of the Fuzzy Classification systen.
It was designed and built using KBCT (Knowledge Base Configuration Tool)
a free software tool which implements the HILK methodology [9]. This new
methodology focuses on building interpretable fuzzy classifiers, i.e., classifiers
easily understandable by human beings.

In classical logic only two crisp values are admissible (0/1, false/true, etc).
This is a strong limitation in order to deal with real-world complex problems
where there are many important details which are usually vague. Working with
FL everything has a membership degree. Rules are of form If condition Then
conclusion, where both condition and conclusion use linguistic terms. For in-
stance, If Signal received from APi is High and Signal received from APjis Low
Then The robot is close to Position k.

Regarding the rule generation from data, we have chosen Fuzzy Decision Tree
(FDT) [10}, a fuzzy version of the popular decision trees defined by Quinlan [11].
Notice that our implementation of FDT is able to build quite general rules with
the partitions previously defined. Then, a simplification procedure is carried out
on thie whole fuzzy knowledge base with the aim of removing redundancies and
even getting more compact and understandable systeins.

Finally, the output of the fuzzy classifier will be one position along with an
activation degree computed as the result of a fuzzy inference that takes into
account all defined inputs and rules. Such activation degree can be understood
as a degree of coufidence on the system output.




3 Implementation and Results

The robot used in the experimentation (Sancho3) was developed in the European
Centre for Soft Computing (ECSC) and it is based on a modular architecture
whose first version was designed in the Technical University of Madrid (UPM).
The Test-Bed environment was established in the main corridor of the ECSC
preniises. It was discretized into 16 nodes, and Sancho3 was placed at each node
collecting 1000 signal strength samples from each AP (six APs are available at
the whole environment).

For each position, we computed the mean and the deviation of the corre-
sponding signal (S) and noise (N) values for each AP. Then, we constructed two
tables, one for training and the other for testing. These tables contain tuples of
the form: (Sap1,05,4p1s NaP1,ONpy sy SaPi, OSapi>» NAPi, ON 4 p;, POS), Where
pos is the environment position and ¢ is the number of APs. The training data
were used to automatically generate the Fuzzy Classification system (FC). In
addition, the same data were used to compare our method with the classical lo-
calization method called Nearest Neighbour (NN) [1]. Both methods have been
tested using different number of samples. The best classification rate was 60.16%
for the NN method and 99.2% for FC, these were obtained with 60 samples in
the training and test stages.

— Nearest Neighbour (NN)

Fuzzy Classification (FC)
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Fig. 1. Comparison of classification rates

Also, we have tested the classification rate when the samples taken in the
training and test stage were different. It is important to note that the maximum
acquisition frequency of the WiFi interface is 4Hz, then to take 60 samples it
is needed to spend 15 seconds at the same place. We have reduced the samples
from 60 to 4 with the aim of checking the classification rate of both methods,
Figure 1 shows these results. As it can be seen in this figure, the FC (on the right
picture of the figure) maintains a good classification rate even when the samples
taken are 12 and 4 in the training and test stages. As a result, the FC yields
robust and simple solutions. In the worst case, the classification rate is around
70% for a FC trained with groups of 60 samples when it is tested regarding
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groups made up of only 4 samples (the robot only spends 1 second to capture
them). T addition, the best classification rate achieved by NN method {on the
left picture of the figure) is lower than the worst one obtained by FC.

4 Conclusions and future works

[ this work we have presented a WiFi localization system based on Fuzzy Clas-
sification. We demonstrate that it is useful and robust to localize the robot in
real conditions. The classification rate of our method improves the ratings of
other classical methods like Nearest Neighbour. Ii1 the near future. we have the
intention of using this systein in other enviromments to test the applicability of
tlie method.
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