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A Planning Architecture for Topological Robot Navigation in Uncertain Domains

Elena Lopez Luis Miguel Bergasa

Rafael Barea Marisol Escudero

Dept. of Electronics
University of Alcala
Campus Universitario, 28871, Alcala de Henares (Madrid)
SPAIN

Abstract — This paper presents a new navigation architecture
for autonomous mobile robots working in uncertain domains.
Partially Observable Markov Decision Processes (POMDPs) are
suitable mathematical models for solving localization, planning
and learning problems in uncertain navigation systems based on
a topological representation of the environment. This paper
focuses on the planning module, consisting of a two-level
layered architecture (a local policy and a global policy) that
simplifies the problem of finding optimal policies in POMDPs.
The propesed system naturally integrates several planning
objectives, such as guiding to a goal room, reducing location
uncertainty, and exploring. Some experimental results are
shown, carried out with an assistant robot developed in the
Electronics Department of the University of Alcald.

[. INTRODUCTION

This work has been developed within the SIRAPEM
project (Spanish acronym for Autonomous Robotic System
for Elderly Assistance), which objective is to design an
assistant robot for elderly and/or disabled people. Due to the
dramatic increase of the elderly population in the last years,
the society needs to find new technologies and alternative
ways of providing care to this sector of the population.
Aware of this necessity, nowadays there are several research
groups working in this area, and some important projects
such us “Nursebot” [1] and “Morpha” [2].

Figure 1 shows the global architecture of the SIRAPEM
system, -based on a commercial platform (the PeopleBot
robot of ActivMedia Robotics [3]) endowed with a
differential drive system, encoders, bumpers, two sonar rings
(high and low), loudspeakers, microphone and on-board PC.
The robot has been also provided with a PTZ camera, a
tactile screen and wireless Ethernet link. The system
architecture includes telepresence and telemedicine
interfaces, and several human-machine interaction systems,
such as voice (synthesis and recognition speech) and touch
screen for simple command selection (for example, a
destination room to which the robot must guide the user).

This paper focuses on the navigation module, and mainly,
in the planning system. In this kind of care applications, in
which the robot must perform tasks in indoor environments
(such as houses, nursing homes or hospitals) for long periods
of time, it’s very important to achieve a robust navigation
system capable of treat real world uncertainties, and solve
global localization failures without any user supervision.
Nowadays there are several important works ([4],{5]) about
robot navigation systems specifically dealing with sensors
and actuators uncertainties. Another desired feature for these
assistant robotic systems is to simplify the installation
process, in order to use it in different environments (houses,
hospitals, etc) without long or difficult configuration steps.

0-7803-7937-3/03/$17.00 ©2003 IEEE
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Fig 1. Global architecture of the SIRAPEM project.

So, they must use simple environment representations and
natural landmarks that can be easily found in any indoor
environment.

A suitable mathematical framework for robust navigation
under uncertainty, based on a topological model of the
environment, are Partially Observable Markov Decision
Processes (POMDPs). These models provide solutions to
localization, planning and learning in the robotics context,
and have been used as probabilistic reasoning method in the
three modules of the navigation system proposed in this work
(see figure 1). The robots DERVISH [6], developed in the
Stanford University, and Xavier [7], in the Carnegie- Mellon
University, use these kind of navigation strategies for
localization and action planning. The SIRAPEM navigation
system provides several contributions in this research line.
One of them, presented in previous works [8][9], is the

incorporation of visual information (besides typical
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proximity sensors) to the Markov model in order to improve
the robustness of the localization system. Another one, in
which we focus this paper, is the development of a two-
layered planning architecture that combines global an local
policies to achieve several planning objectives: guidance to a
room, reduction of location uncertainty, and exploration.

This paper is organized as follows. After a brief overview
of POMDPs foundations (section 2), we describe the Markov
model used in this navigation application (section 3). Section
4 shows the global architecture of the navigation system. The
localization module is briefly revised in section 5. The two
layers of the planning system, in which we focus the paper,
are shown in section 6. Finally, we show some experimental
results (section 7), whereas a final conclusion summarizes
the paper (section 8).

II. POMDP MODELS REVIEW

In this section we introduce some terminology and
foundations about POMDPs. Firstly, we describe Markov
Decision -Processes (MDPs) as the underlying model of a
Partially Observable Markov Decision Process (POMDP),
and then we introduce the concept of partial observability. In
both cases, a brief review about conventional planning
methods is presented. ‘

A.  Markov Decision Processes

A MDP is a model for sequential decision making,
formally defined as a tuple {S,4,T,R }, where,

* S is a finite set of states (seS).

* A isa finite set of actions (ae A).

* T={p(s’ls,a) V(s,s’eS aeA)} is a state transition model
which specifies a conditional probability distribution of
posterior state 5’ given prior state s and action executed
a.

* R={r(sa) V (s€S a€Ad)} is the reward function, that
determines the immediate utility (as a function of an
objective) of executing action a at state s.

A MDP assumes the Markov property, that establishes
that actual state and action are the only information needed
to predict next state:

PS4 ,So,a07sl’ah'"7snar) = PS4 ,Sma/) ¢9)

In a MDP, the actual state s is always known without
uncertainty. Planning in a MDP is the problem of action
selection as a function of the actual state. A MDP solution is
a policy a=n(s), that maps states into actions, and so
determines which action must be executed at each state. An
optimal policy a=m*(s) is that one that maximizes future
rewards. Finding optimal policies for MDPs is a well-known
problem in the artificial intelligent field, to which several
exact and approximate algorithms (such as the value
iteration algorithm) have been proposed [1oji).
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B.  Partially Observable Markov Decision Processés

A POMDRP is used under domains where there is net L
certainty about the actual state of the system. Instead, the =
agent can do observations, and so the model includes the -~ |
following elements: RN '
* {S,4,T R}, the same that in the MDP context.

* O, afinite set of observations (o€ 0) i
* U={p(ols) V 0€O0, seS} is an observation model anch
specifies a conditional probability distribution ove

observations given the actual state s. L

Because in this case the agent has not direct access to t’h'é
current state, it uses actions and observations to mainitajj
probability distribution over all possible states, known ag’
belief distribution, Bel(S). A POMDP is still a markoviap -
process in terms of this probability distribution, that 911!3’
depends on the prior belief, prior action, and current
observation, as will be seen in a posterior section. e

In a POMDP, a policy a=m(Bel) maps beliefs - into
actions. So, what in a MDP was a discrete state spac
problem, now is a high-dimensional continuous. space
Although there are numerous studies about finding opti
policies in POMDPs [12], the size of state spaces.and: real
time constraints make them infeasible to solve navigation
problems in robotic contexts. o

This paper proposes an alternative approximate solutia
for planning in POMDPs, dividing the problem into:tw
layers, and applying some heuristic strategics adopted: fror
previous similar works [5]. This method, as will be shown'i
section 7, provides successful resuits in this kind of ro ¢
navigation applications. :

II. MARKOV MODEL FOR ROBOT NAVIGATION

The POMDP model used for robot navigation i§.
constructed from two sources of information: the topology of
the environment, and some experimental information about
action and sensor errors and uncertainties. Taking inta
account that the final objective of the navigation system will- -
be to direct the robot from one room to another, - we -
discretize the environment into coarse-grained “regions” of ,
variable size in accordance with the topology of the- ' - B
environment, in order to make the planning task easier. As
it’s shown in figure 2 for a corridor of the Electronics
Department, only one node is assigned to each room, whi]e“ '
the corridor is discretized into thinner regions. The limits of - ;
these regions correspond to any change in lateral features of
the corridor (such as a new door, opening or piece of wall).

A, The elements: States, Actions and Observations

States (S) of the Markov model are directly related to the
nodes of the topological graph. A single state corresponds to
each room node, while four states are assigned to each
corridor node, one for each of the four orientations the robot
can adopt.
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Fig.2. Topological Graph Model for a corridor of the
Electronics Department

The actions (4) selected to produce transitions from one
state to another correspond to local navigation behaviors of
the robot. We assume imperfect actions, so the effect of an
action can be different of the expected one (this will be
modelled by the transition model T). These actions are:

e  “Go out room”(ag): to traverse door using sonar and
visual information in room states,

e “Enter room” (ag): only defined in corridor states
oriented to a door,

“Turn right” (ag): to turn 90° to the right,

“Turn Left” (ar): to turn 90° to the left

“Follow Corridor” (ag): to continue through the corridor

to the next state.

e “No operation” (ang):
state.

Finally, the observations (Q) in our model come from the
two sensorial systems of the robot: sonar and vision. Markov
models provide a natural way to combine multisensorial
information [9]. In each state, the robot makes two kind of
“observations”. The first one is an “dbstract Sonar
Observation” (oas0): it can perceive, in each of three
nominal directions (left, front and right), whether it’s “free”
or “occupied” and construct an abstract observation from the
combination of the percepts in each direction (thus, there are
8§ possible abstract sonar observations). The second one is a
“Landmark Visual Observation “ (oLyo) consisting of the
number of doors captured by the camera from actual state.

As it was demonstrated in previous published works
about SIRAPEM project [8][9], the incorporation of visual
information improves the observability of the process,
providing much better results in the localization module.

used as a directive in the goal

B.  The uncertainties: Transition and Observation Models

As it was said, besides the topology of environment, it’s
necessary to define some action and observation
uncertainties to calculate the final POMDP model. The rules
to define these errors in our robot and their initial values are
shown in table 1 for action and observation uncertainties. For
example, if a “Follow” action (F) is commanded, the
probability of making a state transition (F) is 85%, while
there is a 5% probability of remaining in the same state

ACTION UNCERTAINTIES
(F=Follow, L=Left, R=Right, O=Out, E=Enter,N=No action)

Command Efect of Command (% probabilities)
F N=5 F =285 F-F=10
L N=5 L =90 L-L =5
R N=5 R=90 R-R=35
o N=5 0=85 O-F=10
E N=10 E=90

OBSERVATION UNCERTAINTIES

Sonar Model (%probabilities)

Open door probability (for all doors) 50
Prob. of detecting something being nothing 10
Prob. of detecting nothing being something 5
Vision Model

Assigned probability to real number of doors 70

Maximum deviation +2 doors

Table 1. Uncertainty rules for constructing the Markov model

(N=no action), and a 10% probability of making two
successive state transitions (F-F). These uncertainty rules
provide initial parameters for the entries of transition (7) and
observation (¥9) matrixes, that are later on-line adapted by the
leaming module to fit real experience data.

IV. NAVIGATION SYSTEM ARCHITECTURE

Figure 3 shows the global navigation architecture of the
SIRAPEM project, formulated as a POMDP model.

At each process step, the navigation system (specifically
the planning module) selects a new action as a command for
the local navigation module, that implements the actions of
the POMDP as local navigation behaviors. As a result, the
robot modifies its state (location), and receives a new
observation from its sensorial systems. The last action
executed, besides the new observation perceived, is used by
the localization module to update the belief distribution
Bel(S).

After each state transition, and once updated the belief,
the planning module chooses the next action to execute.
Instead of using an optimal POMDP policy (this involves
high computational times [12]), this selection is simplified by
dividing the planning module in two layers:

e A local policy, that assigns an optimal action to each
individual state (as in the MDP case). This assignment
depends on the planning context. Three possible contexts
have been considered: (1) guiding (the objective is to
reach a goal room selected by the user), (2) localizing
(the objective is to reduce location uncertainty) and (3)
exploring (the objective is to learn or adjust topology and
uncertainties of the Markov model).

e A global policy, that using the current belief and the local
policy, selects the best action by means of different
heuristic strategies proposed by [5].
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Fig. 3. Global architecture of the navigation system.

This proposed two-layered planning architecture is able
to combine several contexts of the local policy to
simultaneously integrate different planning objectives, as will
be shown in subsequent sections. '

Finally, the learning module (that is out of the scope of
this paper) uses action and observation data to learn and
adjust the topology and uncertainties of the Markov model.

V. LOCALIZATION SYSTEM

Although it’s not the objective of this paper, a brief
review about state estimation for robot localization is
presented in this section, due to the strong connection
between the localization and planning modules.

A.  Markov localization by state estimation

The localization module updates the belief distribution
after each state transition, using the well-known Markov
localization equations [4]. These equations are applied in two
steps:

* Prediction step, that can be calculated just after a new
action a is commanded:

Bel,,. (s) = K- Y p(s'|s,a)- Bel  (s) )

se$

where K is a normalization factor to ensure that the
probabilities all sum one.

e Lstimation step, that must be calculated after action
execution, once the new observation o (at new state) is
perceived, using the Bayes rule;

Bel o (8) =K - p(o]s) - Bel oror (8) 3)
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In the first step, the belief distribution can be initializeq
in one of the two following ways: (a) If initial state of the
robot is known, that state is assigned probability 1.0 and the
rest 0.0. (b) If initial state is unknown, a uniform distributiog
is calculated over all states.

B. Uncertainty evaluation

Although the planning system chooses the action based
on the entire belief distribution, in some cases it will be
necessary to evaluate the degree of uncertainty of that
distribution (this is, the localization uncertainty). :

A typical measure of discrete distributions uncertainty is
the entropy [13]. The normalized entropy (varying between 0
and 1) of the belief distribution is: S

Y Bel(s) - log(Bel(s))

H(Bel) = -5 —— “@

where n, is the number states of the Markov model., The
lower the value, the more certain the distribution. :
However, this measure is not appropriate for detecting

situations in which there are a few maximums of similar. - -
value, being the rest of the elements zero, because it’s
detected as a low entropy distribution. In fact, even bemg o
only two maximums, that is a not good result for the .
localization module, because they can correspond to- far
locations in the environment. So, we propose atiother ;-

measure that better detects the convergence of the

distribution to a unique maximum (and so, that the robot is: = -
globally localized). This is the normalized divergence factor,. ..

calculated in the following way:

D(Bel)zl_PMm) ! )
2:n -1

where d.., is the difference between first and second :
maximum values of the distribution, and pm., the absolute ..

value of the first maximum.

VI. PLANNING SYSTEM

A POMDP model is a MDP model with probabilistic
observations. Finding optimal policies in the MDP case (that
is a discrete space model) is easy and quick for even very
large models. However, in the POMDP case, finding optimal
control strategies is computationally intractable for all bl'lt
the simplest environments, because the beliefs space IS
continuous and high-dimensional.

The solution adopted in this work is to divide the
problem in two steps: the first one finds an optimal lo;al
policy for the underlying MDP (a*=n*(s), or to simplify
notation, a*(s)), and the second one uses a number of simple
heuristic strategies to select a final action (a*(Bel)) as a
function of the local policy and the belief. This structure s
shown in figure 4, and described in subsequent sections.
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A.  Contexts and Local Policies

The objective of the local policy is to assign an optimal
action (a*(s)) to each individual state s. This assignment
depends on the planning context. The use of several contexts
allows the robot to simultaneously achieve several planning
objectives. The “localization” and “guidance” contexts try to
simulate the optimal policy of a POMDP, that seamlessly
integrates the two concerns of acting in order to reduce
uncertainty and acting for achieving a goal. The
“exploration” context is to select actions in order to learn the
topology and parameters of the Markov model.

In this subsection we show the three contexts separately.
Later, they will be automatically selected or combined by the
“Context Selection” and “Global policy” modules (figure 4).

1. Guidance Context

This local policy is calculated whenever a new goal room
is selected by the user. It’s main objective is to assign to each
individual state s, an optimal action (ag*(s)) to guide the
robot to the goal.

Firstly, a modification of the A* search algorithm [14] is
used to assign a preferred heading to each node of the
topological graph, based on minimizing the expected total
number of nodes to traverse (shorter distance criterion cannot
be used because the graph has not metric information). The
modification of the algorithm consists of inverting the search
direction, because in this application there is not an initial
node (only a destination node).

Later, an optimal action is assigned to the four states of
each node in the following way: a “follow” (ag) action is
assigned to the state whose orientation is the same as the
preferred heading of the node, while the remaining states are
assigned actions that will turn the robot towards that heading
(ap o ag). Finally, a “no operation” action (ang) is assigned to
the goal room state.

Besides optimal actions, when a new goal room is
selected Q°(s) values are assigned to each (s,a) pair. In the
MDPs theory, Q-values [11] characterize the utility of
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executing each action at each state, and will be used by one
of the global heuristic policies shown in next section. To
simplify Q values calculation, the following criterion has
been used: Q%(s)=1 if action a is optimal at state s, QY¥s)=-1
(negative utility) if actions a is not defined at state s, and
Q(s)=-0.5 for the remaining cases (actions that disaligns the
robot from preferred heading).

2. Localization Context

This policy is used to guide the robot to sensorial
relevant places that reduce positional uncertainty, even if
that requires to move it away from the goal temporarily. This
planning objective was not considered in previous similar
robots (such as DERVISH [6] or Xavier [7]), or was
implemented by means of fixed sequences of movements [5]
that don’t contemplate environment relevant places to reduce
uncertainty.

In an indoor environment it’s usual to find different zones
that produce, not only the same observations, but also the
same sequence of observations as the robot traverses them by
executing the same actions (for example, symmetric
corridors). Sensorial relevant states are those that break a
sequence of observations that can be found in another zone
of the graph.

So, this policy (a*.(s)) is only environment dependent,
and is calculated from the connections of the graph and the
ideal observations of each state. The optimal action assigned
to room states is “Go out room” (ag). To calculate optimal
actions to corridor states, firstly a preferred heading (among
them that align the robot with any connected corridor) is
assigned to each node. This heading points at the corridor
direction that, by a sequence of “Follow Corridor” actions,
directs the robot to the nearest sensorial relevant state. Later,
an optimal action is assigned to the four states of each
corridor node to align the robot with the preferred heading,
(as it was described in the guidance context section).

3. Exploration Context

The objective of this local policy is to select actions during
the exploration stage, in order to construct the topological
graph and learn transition and observation probabilities. As
in this stage states are unknown (the belief can’t be
calculated), there is not distinction between local and global
policies, whose common function is to select actions in a
reactive way to explore the environment. This context is
strongly connected with the learning moduie, and they are
out of the scope of this paper.

B.  Global Heuristic Policies

The global policy combines the probabilities of each state
to be the current state (belief distribution Bel(S)) with the
best action assigned to each state (local policy a*(s)) to select
the final action to execute, a*(Bel). Once selected the local
policy context (for example guidance context, a*(s)=ag*(s)),
some heuristic strategies proposed by [4] can be used to do
this final selection (see figure 5).
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Fig. 6. The weighted-voting context combination method

The simplest one is the Most Likely State (MLS) global
policy that finds the state with the highest probability and
executes the local policy of that state (figure 5.a):

a,,(Bel) =a *(arg max(Bel(s))) (6)

The Voting global policy first computes the probability
mass of each action (V(a)) (probability of action a is
optimal) according to the belief distribution, and then selects
the action that is most likely to be optimal (the one with
highest probability mass) (figure 5.b):

V(@)= Y Bels) VaeA

N
a,, (Bel) = argmax(V(a))
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This method is less sensitive to locational uncertainty,
because it takes into account all states, not only the

probable one. i

Finally, the Qupp global policy is a more refined version
of the voting policy, in which the votes of each state -are
apportioned among all actions according to their Q-values

(figure 5.c):

V(a) = Y Bel(s)-Q* (s) Vae A

a,,,, (Bel) = arg max(V(a))

This is in contrast to the “winner take all” behavior of the’
voting method, taking into account negative effect of actions.

C. Automatic Context Selection or Combination

Apart from the exploration context (out of the scope Of
this paper), this section considers the automatic cogl,text
selection (see figure 4) as a function of the locanongl
uncertainty. When uncertainty is high, localization conte;xt,ls
useful to gather information, while with low uncertalnty,
guidance context is the appropriate one. In some cases,
however, there is benign high uncertainty in the belief state;
that is, there is confusion among states that requires the same
action. In these cases, it’s not necessary to commute to
localization context. So, an appropriate measure Of
uncertainty is the normalized divergence factor of the
probability mass distribution, D(V(a)), (see eq. 5).

The thresholding-method for context selection uses a
threshold ¢ for the divergence factor D. Only when
divergence is greater than threshold (high uncertainty),
localization context is used as local policy:

a*(s)= {aa(s)

a (s) si

if D>¢
D<¢

9

most’

®




However, the weighting-method combines both contexts
using convergence as weighting factor. To do this,
probability mass distributions for guidance and localization
contexts {Vg(a) and V| (a)) are computed separately, and then
weighted combined to obtain the final probability mass V(a).
As in the voting method, the action selected is the one with
highest probability mass (see figure 6):

V(a) = (1= D) V,(a)+ D- V,(s)

a*(Bel) = argmax(V(a)) (10)

VIL. EXPERIMENTAL RESULTS

In order to validate the navigation system and compare
the different planning methods and contexts, some
experimental results are shown. Because the advantages of
some planning strategies can only be demonstrated in hard
environments, we include two kind of experiments. Firstly,
we show some results obtained with a simulator of the robot,
in order to test the planning methods in a hard fictitious
environment. After that, we show some experiments carried
out with the real robot of the SIRAPEM project in one of the
corridors of the Electronics Department (an “easier”
environment), in order to validate the navigation system on a
real robotic platform.

A.  Simulation results in an aliased environment

There are some things that make one world more difficult
to navigate that another. One of them is its degree of
perceptual aliasing, that substantially affects the agent’s
ability for localization and planning. The two layered
planning architecture proposed in this work improves the
robustness of the system in “aliased” environments, by
properly combining the two planning contexts: guidance and
localization.

To demonstrate this, we used the fictitious aliased
environment shown in figure 7, in which there are two
identical corridors.

Initial room 25

(unknown)
Goal ropom

v 1

N

Py T

O Jriisisl 7 s oo [

--- 5
13‘7 ‘7 12
26
10 11
£ £
9 \] 1 Voot I N N
/ 132131 30 1290 28 427 Dﬁ

~

8

Fig. 7. Fictitious aliased environment for
simulation experiments

ONLY GUIDANCE CONTEXT

No Final Final Final
Actions H D State 2
MLS 6 0.351 0.754 54.3%
Voting 17 0.151 0.098 63.8%
Quor 15 0.13 0.095 62.3%

GUIDANCE AND LOCALIZATION CONTEXTS
(always with voting global method)

No Final Final Final

Actions H D State 2

H(V(a)) 14 0.13 0.05 83.5%
threshold

D(V(a)) 13 0.12 0.04 100%
threshold

Weighted 13 0.12 0.04 100%
D(V(a))

Table 2. Comparison of the planning strategies in the
fictitious environment

In all the experiments the robot was initially at room state
0, and the commanded goal room state was 2. However, the
only initial knowledge of the robot about its position is that
it’s a room state ( initial belief is a uniform distribution over
room states). So, after the “go out room” action execution,
and thanks to the visual observations, the robot quickly
localizes itself within the corridor, but due to the
environment aliasing, it doesn’t know in which corridor it is.
So, it should use the localization context to reach nodes 20
(or 27), that are sensorial relevant nodes to reduce

uncertainty.

Table 2 shows some statistical results (average number of
actions to reach the goal, final values of entropy and
divergence and skill percentage on reaching the correct
room) after repeating each experiment a number of times.
Methods combining guidance and localization contexts are
clearly better, because they direct the robot to node 20 before
acting to reach the destination, eliminating location
uncertainty, whereas using only guidance context has a
unpredictable final state between rooms 2 and 1]. On the
other hand, using the divergence factor proposed in this
work, instead of entropy, improves the probability of
reaching the correct final state, because it better detects the
convergence to a unique maximum (global localization).

B, Real robot example

Finally, table 3 shows a real guidance example using the -
SIRAPEM prototype of figure | navigating in a corridor of
the Electronics Department (graph shown in figure 2). The
robot was initially in room 2 with unknown initial room state,
and room 4 was commanded as goal state. In this example,
guidance and localization contexts are combined using
thresholding method with divergence of probability mass as
uncertainty measure. Table 3 shows, for each execution step,
the commanded action, real action and final state (indicated
by means of node number and direction), the first and second
most likely states, and divergence of the belief D(Bel). It also
shows the first and second most voted actions in the guidance
contexts, and their divergence. When divergence is higher
than 0.5, the planner commutes to localization context.
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Step | Commanded |  Real Most likely 2¥Most. | - Guidance Context Local. Cont, | Selected | Next best D(?e,l)-
Action action and state likely state Most * | 2™ most | D(V(a)) | Most voted | context action
: final state | (node and dir) (node and. |. voted voted action (oniy | - selected .
) dir) action action if D>0.5) -
0 Known that initial state is one of the rooms 0(90.9%) | N(9.09%) | 0.148 no needed | GUIDE o} 0.9613
(50, states from 0 to 10 has P=9.0909%, and the rest
p=0%)
1 (6] 016T) |13,1619227T 24T, L(51%) | R(49%) [ 0.801 L(62%) LOCAL L 099
12,15,18,21 4 24 4 .

2 L L_(16<-) | 16 (60%) | 18— (10%) | R(80%) | F(20%) | 0.327 no needed | GUIDE R 0453 ]
3 R R(6T) | 16T(60%) | 180 (10%) | R(80%) L(20%) | 0.327 | noneeded | GUIDE R 0.453 ]
4 R R (162) | 16— (90%) | 18 (2.5%) | F(95%) | R(5%) | 0.081 | noneeded | GUIDE F 0.113 |
5 F F (175) | 175 (78.7%) | 16— (15%) | F(98%) R(2%) 0.032 no needed | GUIDE F 0.290

6 F F (18) | 18- (94.8%) | 19— (3%) | F(100%) | F(100%) 0 no needed | GUIDE F 0.067
7 F F (19-) 19-> (96%) 18— (3%) | F(100%) | F(100%) 0 noneeded | GUIDE F 0.055

8 F F (20) | 20-5(93.5%) 19-(3.3%) | F(100%) | F(100%) 0 noneeded | GUIDE F 0.082
9 F F 215) 215(67%) 225(24%) | F(74.5%) | R(25%) | 0414 no needed | GUIDE F 0.453
10 F N @12) | 215(62%) | 23— (18%) | F(62%) | R(38%) | 0.621 F(67%) | LOCAL F 0.473
11 F F(22-) | 225(82%) | 235(10%) | R(97%) | F(3%) | 0049 | no needed | GUIDE R 0.23]
12 R R(22)) | 221(93%) | 241(6%) | E(93%) R(7%) | 0.114 | noneeded | GUIDE E 0.100
13 E E (4) 4(93.6%) 5(65%) | N©94%) | 0(6%) | 0.098 noneed | GUIDE N 0.097

Table 3. Experimental results navigating towards room 4

As it’s shown in this example, using a localization context
when there is uncertainty about which action to take quickly
reduces location uncertainty, avoiding the selection of a
wrong action,

VIII. CONCLUSIONS

This paper shows a new planning architecture for acting in
uncertain domains. Instead of using POMDP exact solutions,
We propose an alternative two-level layered architecture that
simplifies the selection of the final action, combining several
planning objectives. As local policies we propose a guidance
context, whose objective is to reach the goal, and a
localization context to reduce location uncertainty when
necessary. As global policies, we have adopted some
heuristic strategies proposed in previous works. We have
demonstrated the validity of this architecture in highly
aliased environments, in which the combination of the two
contexts improves the robustness of the planning system, and
.in a real environment using the robot prototype of the
SIRAPEM project. We also introduce a new uncertainty
measure that better detects the convergence to a unique
" maximum that the typical entropy.
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