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Abstract: The authors present a study of driver drowsiness, looking for patterns in biomedical and biomechanical
variables that allow one to characterise the drowsiness cycle and detect its phases with new technologies.
Biomedical signals, eye closure, pressures on the seat, and longitudinal and lateral control of the vehicle were
recorded in a driving simulator, during a test in an environment that induced drowsiness, while subjects were
motivated to struggle against sleep. Twenty volunteers were measured during the 1 h 45 min tests. A control
signal that combined EEG and percent of eye closure (PERCLOS) was defined to classify the different states of
the participants during the test. According to that standard, drowsiness was successfully induced in 80% of
the subjects. The changes in those states influenced both the performance of the driving task and the
biomedical signals, although the former were less sensitive to early fatigue. Heart rate variability and
respiration turned out to be promising indicators of the state of the driver, which can be used in future

drowsiness detection systems.

1 Introduction

One of the priorities of current approaches in automotive
research is helping the driver to avoid accidents. Human
error is the primary cause of casualties on the road, due to
lack of attention or excess fatigue. Therefore one strategy to
address this problem is detecting how the driver feels at
each moment, by monitoring his or her activities.

Driver behaviour monitoring and the reliable detection of
drowsiness and fatigue is one of the leading objectives in the
development of new Advanced Driver Assistance Systems
(ADAS). Nowadays, most systems of drowsiness detection
in the market are based on the control of driving
performance. These techniques assess variables recorded by
vehicle standard protocols, like the position of the vehicle
on the lane, its speed and steering wheel movements. Some
research groups have used techniques based on the
movement of eyes and the head [1, 2]; there are also
approaches based on biomedical signals, like cerebral,
muscular and cardiovascular activity [3—5], although most

of them are still far from being eftectively introduced in the
market, according to recent surveys [6].

Biomedical signals are especially useful to collect detailed
information of the body’s response during the drowsiness
cycle. The information that they provide goes beyond the
usual systems that just detect risky situations (degraded
driving performance or visual symptoms of lack of
attention), and can potentially anticipate the onset of
sleepiness. The major drawback of the techniques based on
biomedical signals is that they require placing sensors
directly on the subject’s body, although there are some
attempts to record them indirectly, through non-intrusive
systems that could be used in real vehicles [7].

Heart activity is an important, easy-to-measure indicator
of the driver’s state. There are different techniques to
measure it, but electrocardiography (ECG) is the most
direct and informative one. Heart activity varies depending
on the person’s activity, and it is possible to identify the
lack of attention by analysing heart rate variability (HRV).
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A person focused on performing some task usually shows a
more regular heart rate, and as the focus on the task
decreases, heart rate becomes more irregular and HRV
increases [3].

Electroencephalography (EEG) is a standard technique in
sleep studies. Brain electric activity shows characteristic wave
patterns in some states, and their difference between
consciousness and sleep, as well as in the transition from one
state to the other, has been widely studied. The power of 6-
waves (in the 4-7 Hz range) is commonly regarded as a
clear indicator of lack of attention and the onset of sleep [8—
10]. The « range (8—-12 Hz) plays an important part in the
transition from wakefulness to sleep, although the behaviour
of a-waves in that phase is less regular. They are not directly
related to sleepiness itself, but to ‘relaxed wakefulness’,
which leads to a reduced readiness to react to stimuli [8].
This condition can precede a deeper state of drowsiness, and
in fact a-waves have also been regarded as an indicator of
early sleep [9]. That interpretation is further supported by
the increase of « activity associated with eye closure, which
leads to drowsiness in rest conditions. However, this pattern
may be misleading in driving conditions.

Microsleeps, which are a critical issue in road safety, are
actually characterised by short periods where a-waves
vanish and are replaced by #-waves [10]. An explanation
for this phenomenon is that drivers tend to avoid a
complete closure of their eyes, even when fatigue seizes
them, although they cannot prevent a partial closure and
more frequent blinks, which are the cause of a artefacts.
Accordingly, it has been stated that combining EEG and
eye closure may permit one to detect unsafe situations
reliably [10].

Electroencephalography is  often combined  with
electrooculography (EOG), since drivers in fatigue exhibit
changes in the way their eyes perform some actions, such as
moving or blinking. These actions are known as visual
behaviours and are easily observable in drowsy drivers. The
percent of eye closure (PERCLOS) has been found to be
the most reliable indicator of drowsiness [11]. Computer
vision has been the tool chosen by many researchers to
monitor visual behaviours, since it is a non-intrusive
technique. Most of these systems use one or two cameras
to track the subject’s head and eyes [12—14]. Mono-camera
systems have been a major focus in recent years, because
their integration in industrial production is easier and less
costly. Commercial products are available for general
applications not focused on driving problems. A few
companies commercialise systems as accessories for
installation in vehicles [15—17], but they are not part of the
car manufacturers’ developments, since their reliability is
still not high enough for car companies to take on the
responsibility of their production.

Some camera-based systems also attempt to evaluate the
driver’s state by recognition of driver facial expressions.

Such systems compare the current face of the driver with
two calibrated images, one with eyes open and another
with the driver in sleepy conditions. This method works
well under ideal circumstances (head straight and face
forward) [2], but as in the case of many other camera-based
solutions, it is very sensitive to users wearing glasses, head
movements and lighting conditions. Regardless of the type
of measurement, one of the chief problems of drowsiness
detection studies is the difficulty of carrying out
experimental tests to validate the techniques. These tests
are often conducted in the laboratory with driving
simulators, because, for safety reasons, road tests in real
vehicles have strong limitations. Laboratory settings allow
the use of controlled environments, in which drowsiness
can be induced, and it is possible to use many
measurement devices that are difficult to integrate in real
vehicles. However, the principal limitations of laboratory
experiments are their lower realism and the risk of
simulator sickness [18]. Another important problem in
both road and laboratory studies is the alteration of the
spontaneous behaviour of drivers: drowsiness in real driving
is caused by a combination of the accumulated fatigue of
the driver and the boredom associated with a monotonous
task, especially when on familiar roads and in familiar
vehicles. The unusual experience of participating in such an
experiment, especially when subjects are instrumented, or
the ‘white coat effect’ due to the presence of researchers,
may hinder drowsiness; on the contrary, the higher level of
stimulation in real road conditions may reduce sleepiness
[19]. This limits the efficacy of the experiments, because in
order to validate the models of drowsiness detection, it is
important to have a balanced and realistic quantity of
records of users in both wakeful and drowsy periods.

This paper presents a laboratory experiment conducted
with non-intrusive instrumentation in a driving simulator,
with a three-fold objective: (a) to gather a database of
biomedical signals, plus driving performance parameters,
and movements of the eyes and body from drivers in both
wakeful and drowsy conditions, which may be successfully
used to study measurable changes related to reduced
attention and drowsiness; (b) to define a control variable
based on EEG and PERCLOS, as recommended in the
literature, to classify the drowsiness phases; and (c) to find
patterns in the remaining variables that allow one to
distinguish the different phases as detected by the control
signal in order to define advanced methods of drowsiness
detection and prevention.

2 Materials and methods
2.1 Subjects

The number of participants was limited by the hard
conditions of the test, which required different degrees of
sleep deprivation, and one also had to pass a test that
excluded people with physical problems or the propensity
to suffer simulator sickness. Previous studies with similar
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conditions used groups of between 7 and 30 participants to
detect driver drowsiness [1, 3, 7, 20-22]. A group of 20
volunteers between 25 and 45 years was selected to
participate in this experiment: ten of them performed the
test in the afternoon, having slept normally the night
before; the other ten performed it in the early morning,
deprived of sleep after their workday and having remained
awake during the previous 24 h. In each group there were
five men and five women. All subjects signed a consent
form, were informed of the purpose of the experiment, and
were paid for their participation.

2.2 Laboratory

The experiments were conducted in the facilities of the
Institute of Biomechanics of Valencia, in a room with
controlled light, temperature and background sound. The
sessions were programmed at different day hours, but the
same night environment was simulated in all cases, with
only an artificial dim light and a stable temperature of
around 24-26°. A monotonous road sound at low volume
was played during the simulation to further induce drowsiness.

The simulator consisted of a bench with a driver’s seat, a
seatbelt to fasten the subject and driving simulator software
(Fig. 1). An infrared camera recorded the face of the driver.
Two pads were placed on the seat pan and the backrest to
record pressure maps. A thermographic camera and
superficial sensors recorded skin temperature. A biomedical
monitor was used to record biomedical signals: EEG,
EOG, two ECG derivations, abdominal respiration and
pulsoximetry. All signals were synchronised by a trigger or
by the internal clock of the computers.

All the computers were placed behind the simulator bench,
which was surrounded by panels to create a closed
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Figure 1 Instrumented subject

environment. To further prevent distraction and the ‘white
coat effect’, the experiment was monitored from a
control room out of the participant’s sight, so that the
subjects did not feel that they were accompanied or
observed (Fig. 2).

2.3 Procedure

Once the subjects were informed and signed the consent
forms, they were instrumented and drove for a period
between 15 and 30 min until they were familiarised with
the driver simulator. Before starting the measurement
phase, they were told that they would receive an additional
economical compensation if they remained awake through
the test, in order to encourage them to struggle against
falling asleep, as in a real driving context. Then the
simulation was restarted, and the subjects had to drive for
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Figure 2 Laboratory setup
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1 h 45 min on a highway with low traffic and smooth curves
in a night simulation.

During this whole period they were constantly monitored.
After finishing the route, the light and sound were turned off
and the subjects remained seated with closed eyes, in order to
have a baseline measurement of physiological activity in a
context similar to drowsiness or sleep without driving.

2.4 \Variables and analysis

One group of the recorded variables was used to define a
continuous ‘control signal’, which classified the state of the
participants in three phases: Phase O (wakefulness,
attentive behaviour), ‘Phase I’ (incipient fatigue, moderate
fall of attention and decrease of driving performance) and
‘Phase II' (risk of falling asleep, symptoms of drowsiness
and important degradation of driving performance). Deeper
states of drowsiness, such as total lack of attention or sleeps
of variable duration, were assumed to fall into Phase II,
since they occurred too seldom to be able to define
characteristic patterns of the measured variables, and a
drowsiness detection system should act before the onset of
that phase, so there was no practical advantage in
distinguishing it from Phase IL.

The control signal was computed with an algorithm that
used the values of EEG (filtered by EOG data) and
PERCLOS in a 20-s window around every instant, and for
which ‘fatigue’ and ‘drowsiness’ thresholds were defined
according to the personal patterns of the subject’s
behaviour. The procedure for defining that control signal
and its thresholds is represented in the scheme of Fig. 3,
and described in detail next.

The EEG parameter used in the analysis was the ratio of
6-waves per minute, in contrast to « patterns. This
measurement was adjusted by the judgement of medical
experts, who visually interpreted the set of EEG + EOG
signals, to discard ‘false’ waves caused by eye movements or
other artefacts. PERCLOS was calculated with a
monocular computer vision system. This system was tested
in driving simulators and demo-cars driving in real
conditions, and it was found to be robust to head turns,
partial occlusions and illumination changes in both day and
night scenarios.

The PERCLOS measure indicated accumulative eye
closure duration over time, excluding the time spent on
normal eye blinks. It was calculated by a new method of
face and eyes recognition and tracking, developed by the
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Figure 3 Definition of the control signal

authors, and called R-SMAT (Robust Simultaneous
Modelling and Tracking), which was applied over the
images in order to robustly detect eye position. A deeper
explanation of the method can be found in [23]. The
degree of eye opening was characterised by pupil shape. As
eyes closed, pupils became occluded by the eyelids and their
shapes became more elliptical. Therefore we could use the
ratio of the pupil ellipse axes to characterise the degree of
eye opening. We considered that eye closure occurred when
that ratio was over 80% of its nominal size. Then, the
measurement of eye closure duration was calculated as the
time that the eyes remained in that state. More details can
be found in [24].

The behaviour of users was based on the objective
assessment of their driving performance and the subjective
assessment of their body and face movements. Driving
performance was judged by the lateral deviation of the
vehicle and steering delay in curves and overtaking (lateral
control) and by speed constancy in relation to posted speed
limits (longitudinal controls). Body and face movements
were annotated by an observer in the control room every
minute during the test, and they were also recorded on
video, so that the observer’s notes could be contrasted
afterwards.

The driver's behaviour was classified as ‘attentive’,
‘fatigued’ or ‘drowsy’, according to the criteria given in
Table 1. The levels of EEG and PERCLOS associated
with changes from ‘attentive’ to ‘fatigued’, and from
‘fatigued’ to ‘drowsy’, were determined in each test, and a
confidence interval based on the whole set of data was
defined for these thresholds, as represented in Table 1.

These thresholds were used to define the control signal, as
a combination of the EEG and PERCLOS variables. The
algorithm that defined this control signal considered that a
high power of EEG 6-waves (and a few a-waves) was a
reliable indicator of drowsiness, but that incipient fatigue
could appear before this pattern occurred; besides, frequent
blinks and high eye closure appeared early, although eyelid
movement patterns vary a lot. Thus, the control signal
determined that the driver was in ‘Phase O’ only if both
EEG and PERCLOS were below the lower threshold, and
that the driver was in ‘Phase II' if EEG was over the upper
threshold or one of the signals was over the lower threshold
and the other was over the upper one.

One analysis consisted in studying the reliability of a
drowsiness detector based on the results of driving reactions
alone, which is one of the common methods used for these
kinds of devices, in comparison to the described algorithm.
This comparison was carried out with the ‘Cobweb
method’ developed by Patel and Markey [25, 26] and a
conventional calculation of sensitivity/specificity.

The remaining signals (ECG, pulsoximetry, respiration,
pressures and temperature) were used as ‘test variables’.
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Table 1 Description of the parameters used to define the control signal in the different phases

Variable Phase O {(attentive} Phase | (fatigued) Phase Il {drowsy)
Behaviour | High level of activity. Fast reactions to | Slower reactions. Yawns and large body Fall of attention to the
road events. Good lateral and movements. Driving errors. Loss of facial road. Departures off
longitudinal control expressivity the lane
EEG Lack of 0-waves. Regular patterns of | Small ratio of §-waves. Regular patterns High ratio of 6-waves.
a-waves with closed eyes. of a-waves with closed eyes. Loss of a regular patterns.
Threshold for 6 ratio: Thresholds for 8 ratio: Threshold:
<1.92 (s.d. = 0.88) >1.92 (s.d. = 0.88), <8.22 (s.d. = 3.0) >8.22 (s.d. = 3.0)
PERCLOS Small PERCLOS. PERCLOS increase. More frequent and High PERCLOS and slow
Low and fast blinking. Threshold: slower blinks. blinks.
<0.24 (s.d. = 0.19) Thresholds: >0.24 (s.d. = 0.19), Threshold:
<0.45 (s.d. = 0.24) >0.45 {s.d. = 0.24)

They were analysed using a moving 20-s window, splitting
them into the different phases, in order to look for
parameters and patterns that characterise the drowsiness
cycle. The resulting values of amplitude, frequency and
correlation with predefined patterns were statistically
compared with an ANOVA test, with the following factors:

e The phase of drowsiness (Phase 0, I or II), as a within-
subjects factor, to find the differences due to the stage of
the test.

e The group of subjects (sleep-deprived or non-deprived), as
a between-subjects factor, to find the differences due to the
initial state of the driver.

3  Results

The control signal indicated that 80% of users in both groups
(normal and sleep-deprived) entered Phase I at least once
during the trial. Phase II was detected in 20% of the
subjects on average, but three more times in persons
deprived of sleep (30%) than in normal subjects (10%). All
the subjects who entered Phase [ experimented alternate
periods of alertness and drowsiness, with an average of
seven cycles during the test. Drowsiness periods (Phases I
and II) were 80 s long on average for normal subjects and
110 s long for subjects deprived of sleep. The accumulated
time of these periods over the whole test was 11 min for
normal users and 15 min for subjects deprived of sleep (10
and 13% of the total time, respectively).

These results contrast with the longer and more frequent
periods of drowsiness and sleep detected in other studies,
which are several minutes long and account for more than
90% of time [20], or are associated with an increasing
degradation of vigilance [21]. However, this experiment
was designed to reproduce the frequent and dangerous
situation in which drivers are not inclined to fall asleep, but
are motivated to keep awake regardless of their level of
fatigue. The relatively short spans of drowsy phases may be

because of a difference in the drowsiness scales, but
probably was also due to the active struggle of the subjects
to keep awake. Thus, these results may be comparable to
the microsleeps that occur in real driving.

The classification of driving performance measurements
was compared with the control signal (Table 2 and Fig. 4).
The Cobweb plots show that the classification based on

_ driving performance alone coincided with the control signal
for Phases 0 and II in more than 75% of the cases. The
sensitivity to Phase I was lower, because an important
amount of Phase I cases (47%) were classified as Phase 0.

Therefore driving performance is a good discriminator of
Phases 0 and II (completely awake and drowsy), with a
sensitivity (ability to detect true positives) of 83% and a
specificity (ability to detect true negatives) of 89%.
However, the intermediate Phase 1 (incipient fatigue,
without risk of falling asleep yet) is difficult to predict with
driving performance alone.

The test variables were compared as a function of the
group and the state of the participants, in order to find to
what extent these measurements may be effective detectors
of the symptoms of drowsiness in comparison to the most
usual methods. Significant differences were found in the
ECG and respiration parameters.

Table 2 Confusion matrix of the classification according to
driving as compared to control signal

Control signal

PO Pl Pl

Classification

P010.960.47]0.13
Pl 10.05}0.39]0.04
PlI | 0.00 | 0.10 ] 0.78
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Figure 5 Example of the correlation between respiration and mean pressures on seat pan and backrest

a Raw data
b Derivatives

Heart rate variability (HRV) was parameterised as the
RMS of differences between consecutive beats (rMSSD),
and it differed significantly for one of the derivations,
depending on the initial condition of the subject (F(1,
12) = 7.773, p = 0.016). tMSSD was 51 ms on average for
sleep-deprived subjects, and 39 ms for non-deprived
subjects. This coincided with the usual increment of HRV
associated with fall of attention [3].

The phase indicated by the control signal had a marginally
significant effect on the respiration amplitude (F(1,
12) = 3.201, p = 0.099): during Phase I or II (fatigue or
drowsiness), its amplitude was 5% greater than during
Phase O (alertness).

The parameters measured with the pressure sensors did
not show significant differences depending on the factors of
the analysis, but in static conditions a correlation was

observed between the dynamics of respiration and the mean
pressure on the backrest. From each subject, ten samples of
20 s of the respiration and pressure signals were randomly
chosen, five of them corresponding to Phase O intervals and
the other five to Phase I or II. In 14.3% of those cases, the
derivative of the average seat pressure was significantly
correlated with the derivative of the respiration signal
(Pearson’s rtho >0.5, p corrected by Sidak’s criterion
<0.05). This ratio increased for backrest average pressure,
to 20% of cases. These significant cases were concentrated
in 50% of subjects. Fig. 5 shows one of these cases where
the correlation can be clearly observed.

4 Conclusions

The experiments that have been described allowed one to
study how drivers reacted in strenuous conditions, in which

they tended to become fatigued and drowsy but struggled

Q4

6

© The Institution of Engineering and Technology 2010

IET Intell. Transp. Syst., pp. 1-9
doi: 10.1049/iet-its.2009.0110



against falling asleep. This setting yielded periods of
inattention shorter than previous, similar research; however,
this result might actually reflect a more realistic situation,
since a driver cannot remain asleep for more than a few
seconds without having an accident [22], and the typical
risk of accident owing to fatigue is not a deep, sustained
state of drowsiness but ‘microsleeps’ or a transitory fall of
attention in critical manoeuvres.

We used a control signal that classified the state of the
driver during the test, defined by a combination of EEG
patterns and PERCLOS, as recommended in the literature,
and thresholds were defined from the observation of the
driver’s behaviour in terms of gestures and driving control.
A comparison of this signal with a classification of the state
of the user according to driving performance alone showed
that the latter successfully identified the fully awake and
drowsy states, although it was less sensitive to incipient
fatigue. This might be because the driving scenario was a
monotonous highway with low traffic, and some
experienced drivers can maintain good control of the
vehicle in such a context, despite increasing fatigue and fall
of attention.

These results mean that the drowsiness detectors based on
driver performance parameters such as lane crossings, speed
and steering wheel movements are a good solution to
detect risky situations, and could be used to prompt some
emergency ‘wake-up’ system to give the user some time to
get off the road and rest. Nevertheless, they should be
complemented with more direct measurements of the
physical state of the driver in order to anticipate those
situations.

EEG cannot still be applied to real vehicles, but
PERCLOS can be measured with non-intrusive in-vehicle
cameras. The system that was used in the reported
experiments has been tested in real driving conditions; it
worked robustly during day and night and for users not
wearing glasses, and yielded an accuracy ratio of over 95%.
Unlike other systems, our proposal was robust to head
turns, partial occlusions and illumination changes, although
its performance decreased with drivers wearing glasses and
it did not work with drivers wearing sunglasses. The results
obtained in the simulator showed a high correlation
between PERCLOS and EEG patterns; therefore
PERCLOS can be a good candidate as non-intrusive
ground-truth for the development of other sensors.

These experiments were also used to study the patterns of
other biomedical and biomechanical signals as a function of
the state of the driver, in order to check their potential as
an input for future drowsiness detectors. Consistent with
previous research, HRV showed higher rates in fatigued
participants, but the factor that dominated the differences
was the initial state of the driver, and this obscured the
differences along the test; that is participants who were
sleep-deprived generally showed higher rates of HRV than

www.ietdl.org

‘rested’ participants, but we did not find a significant
increase of HRV as the test progressed. On the other hand,
respiration did increase in amplitude during Phase I and
Phase II periods, when compared to Phase 0. This effect
may be associated with a change in the sympathetic-vagal
activity owing to the fall of conscience.

Another interesting finding is the correlation between
respiration and average pressure on the seat, and
especially on the backrest, which was found in some
periods, although pressure was not found to be affected
by the state of the user. The lack of significance in the
results of the pressure measurements might be due to the
artefacts introduced by the voluntary, large movements of
the drivers.

The results of this study provide a promising background
for the development of reliable advanced drowsiness
detectors, based on sensor fusion. In addition to the
information provided by driving performance (to detect
critical situations) and PERCLOS (as a more sensitive
indicator of early sleepiness), heart rate measurements can
work as a general indicator of the driver’s state on different
days, which might be used to weigh the other signals. We
analysed it through invasive ECG, but there are systems
that claim to be able to measure heart rate through the
steering wheel, although they are still under development
(7,27, 28].

A further concern related to ECG measures is that heart
rate can vary for reasons not related to drowsiness.
Nevertheless, we analysed heart activity on the basis of its
instantaneous variability, or to put it another way, the
regularity of heartbeats, rather than their rate. This
indicator has been found to be more sensitive and
diagnostic of alertness than heart rate [3]. In any case, all
individual indicators must be taken with caution, since all
systems are subject to noise and artefacts (intentional
manoeuvres, glares, body movements and reactions etc.), so
it is important to have redundant data to achieve robust
measurements.

On the other hand, respiration amplitude changed as the
test progressed. That is an understudied parameter that we
are researching in more depth, in order to find more
detailed patterns that can provide valuable information of
the state of the driver, to be combined with the other
variables.

In these experiments, respiration was measured by
intrusive plethysmography, but we also found a high
correlation with average pressures on the seat and the
backrest in some drivers, although artefacts obscured them
when drivers were moving. This problem hinders the
application of pressures to evaluate the respiration, although
it has a great technical potential, since it is an absolutely
non-intrusive measurement. A possibility to overcome the
problem of artefacts is to define an algorithm to filter the
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contribution of large movements, which could be
complementarily recorded by visual recognition or by other
techniques.
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