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Abstract— We present a novel approach for place recognition
and loop closure detection based on binary codes and disparity
information using stereo images. Our method (ABLE-S) applies
the Local Difference Binary (LDB) descriptor in a global
framework to obtain a robust global image description, which is
initially based on intensity and gradient pairwise comparisons.
LDB has a higher descriptiveness power than other popular
alternatives such as BRIEF, which only relies on intensity. In
addition, we integrate disparity information into the binary
descriptor (D-LDB). Disparity provides valuable information
which decreases the effect of some typical problems in place
recognition such as perceptual aliasing.

The KITTI Odometry dataset is mainly used to test our
approach due to its varied environments, challenging situations
and length. Additionally, a loop closure ground-truth is intro-
duced in this work for the KITTI Odometry benchmark with
the aim of standardizing a robust evaluation methodology for
comparing different previous algorithms against our method
and for future benchmarking of new proposals. Attending to
the presented results, our method allows a fast and more effec-
tive visual loop closure detection compared to state-of-the-art
algorithms such as FAB-MAP, WI-SURF and BRIEF-Gist.

I. INTRODUCTION

Visual navigation systems used by intelligent robots and
vehicles need effective and efficient computer vision al-
gorithms for robust and fast place recognition. Since the
appearance of FAB-MAP [1], loop closure techniques based
on visual information have experienced a significant growth
and several works have contributed to this research line (see
Section II). However, FAB-MAP has some drawbacks, such
as the need of a previous training to build a visual vocabulary
of the environment and the associated probabilistic approach,
making the algorithm not suitable for real-time applications.

The usage of binary descriptors for place recognition
has been recently proposed in some works in the litera-
ture [2], [3], [4], [5]. Binary descriptors provide a reduction
in computational costs and memory resources compared to
vector-based descriptors. In [2], the authors introduced a
global binary descriptor named BRIEF-Gist for loop closure
detection problems. BRIEF-Gist was shown to accomplish
better detection rates than FAB-MAP, while being several
orders of magnitude faster. Besides, BRIEF-Gist also has
better performance than global vector-based descriptors such
as WI-SURF [6], as demonstrated in our tests.
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Fig. 1. Proposed visual place recognition method based on LDB codes
and disparity information for loop closure detection. Given an image patch
p and a sampling pattern, a binary test is applied as a comparison of the
image intensity, gradient and disparity.

In this paper, we propose a novel approach for visual place
recognition and loop closure detection which uses global
binary descriptors that are built from intensity, gradient and
disparity pairwise comparisons, as presented in Fig. 1. We
extend the Local Difference Binary (LDB) [7] descriptor to
incorporate disparity information (D-LDB). As will be shown
in our experiments, the addition of disparity provides a more
precise visual localization than only using intensity and gra-
dient information. The image description applying disparity
helps to reduce some typical problems related to visual
place recognition, such as perceptual aliasing. Our method,
named ABLE-S, improves the results obtained by other
state-of-the-art algorithms such as FAB-MAP, WI-SURF and
BRIEF-Gist and it also has a low computational cost.

The most important contributions introduced in this work
are the following:

• An innovative algorithm for visual place recognition
and loop closure detection based on LDB global binary
descriptors and disparity (see Section III and IV).

• A new ground-truth designed for loop closure detection
in a challenging dataset as the KITTI Odometry [8] and
an objective evaluation methodology (see Section V).

• An extensive comparative study about the experimental
results obtained with our algorithm in its different
variants against the principal state-of-the-art algorithms
(see Section VI) and the main conclusions obtained
jointly with some future research lines (see Section VII).
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II. RELATED WORK

BRIEF-Gist demonstrated that vision-based loop closure
detection algorithms do not need a very complex visual
description such as the one suggested by FAB-MAP. This
theory was reinforced by [9], which experimented with low
resolution images to make evident that a handful of bits is
sufficient for conducting an effective vision-based navigation.
Furthermore, matching of binary features can be extremely
fast for associating views of the same place in different
moments, as deduced from [10].

Local binary descriptors have improved significantly since
the initial formulation of BRIEF [11]. Other approaches
such as ORB [12] and BRISK [13] extend the BRIEF
formulation to add invariance to rotation and scale changes.
One of the most recent and attractive methods for image
description based on local binary codes is LDB. This binary
descriptor not only uses intensity information as BRIEF,
but also gradient difference tests, dividing the image into
several cells and applying a multiple gridding strategy with
the aim of capturing distinct patterns at different spatial
resolutions. This approach allows a high precision for image
description and a faster matching speed compared to BRIEF.
Furthermore, an evolution of the original algorithm called
M-LDB [14] was recently presented, adding invariance to
scale and rotation.

Apart from intensity and gradient information provided by
LDB, disparity information of the environment can improve
place recognition. Several works in the literature use 3D
information to improve performance of vision-based navi-
gation methods, such as [15], [16], [6]. In [15], FAB-MAP
is extended to incorporate the spatial distribution of visual
words in 3D. Similarly, a combination of visual words and
3D information from stereo sequences was used in [16] to
perform robust place recognition. In [6], a global SURF [17]
descriptor called WI-SURF was applied in combination
with rough 3D information captured by a single line laser
scanner to improve loop closure detection. However, the
calculation and matching of combined visual features and
3D information is associated with a high computational cost.
For this reason, a binary code that integrates disparity as the
one proposed in our work (D-LDB) is a promising approach,
since 3D information is efficiently integrated in the binary
descriptor, improving place recognition performance.

III. BINARY DESCRIPTORS

In this section, we briefly explain the basic principles
of binary descriptors. In general, binary descriptors are
built from a set of pairwise intensity comparisons from a
sampling pattern centered in a point of interest, as shown in
Fig. 1. Each bit in the descriptor is the result of exactly one
comparison. It is important to note that the set of pairwise
comparisons is not only limited to intensity, since gradient
and other image cues can also be applied, increasing the dis-
criminative power of the descriptors [7], [14]. Furthermore,
most of the binary descriptors differ in the sampling pattern,
which can be fixed or adapted to obtain descriptors invariant
to scale and rotation.

One of the nicest properties of binary descriptors is that
they can be matched very efficiently by using the Hamming
distance. This is more efficient than the traditional way of
matching descriptors with the L2-norm.

Now, we will explain how these binary descriptors are
constructed. Considering a smoothed image patch p centered
in the location of the point of interest x = (x, y), a binary
test τ is defined as:

τ (p; f(i), f(j)) =

{
1 f(i) < f(j)
0 f(i) >= f(j)

, i 6= j, (1)

where f(i) is a function that returns an image feature
response for a certain pixel or cell in p. f(i) can be
simply the smoothed image intensity I at one pixel location
xi = (xi, yi), as proposed by binary descriptors such as
BRIEF, ORB and BRISK:

f(i) = I(xi) (2)

Additionally, f(i) can also be the concatenation of different
binary comparisons such as averaged image intensities Iavg
and image gradients Gx, Gy on a particular cell ci in p, as
proposed by binary descriptors such as LDB and M-LDB:

f(i) = {Iavg(ci), Gx(ci), Gy(ci)} (3)

With the aim of reducing the effect of place recognition
problems such as perceptual aliasing, the initial proposal
of LDB is extended in our method by also applying binary
comparisons for averaged disparity information Davg:

f(i) = {Iavg(ci), Gx(ci), Gy(ci), Davg(ci)} (4)

Finally, the resulting descriptor dn(p) is computed as a
vector of n binary tests, where n is also the final dimension
of the descriptor, which is usually empirically adjusted:

dn(p) =
∑

1≤i≤n

2i−1τ (p; f(i), f(j)) (5)

IV. PROPOSED METHOD

A. Binary code calculation

We have chosen LDB instead of other binary descriptors
for our place recognition proposal because LDB improves
the performance of BRIEF by adding the output of binary
tests based on gradient comparisons, apart from intensity.
Besides, we have extended the original formulation of LDB
to incorporate disparity information (D-LDB), as exposed in
Eq. 4. Disparity is calculated by following the SGBM (Semi
Global Block Matching) algorithm proposed in [18], which
is applied by using its OpenCV [19] implementation.

As stated in [9], high resolution images are not needed to
accomplish an effective visual navigation. According to this,
our image patch p is sized at 64x64 pixels and images are
downsampled to this resolution before applying the global
binary descriptor. A lower size of p decreases our place
recognition effectiveness and a higher one does not yield
increased precision. In addition, we fix the binary codes to
a dimension n of 256 bits (32 bytes), which is supported by
works such as [2], [7]. The code is adjusted to the fixed n
by using the random bit selection method proposed in [7].
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The global binary descriptor is computed by taking the
center of the resized image patch as a keypoint without
dominant rotation or scale. However, other alternative can
be applied, which consists in dividing the image into grids,
calculating a descriptor for each one and concatenating them
in a final binary code, by adopting the centers of the resized
grids as keypoints. This approach can consider different
numbers of grids in width and height (gw × gh).

B. Binary codes matching

Loop closures can be detected in our place recognition
method by correlating the elements of v, which is a vector
that contains the binary codes obtained for the total number
of analyzed scenes m, as defined in Eq. 6. Similarity between
binary codes is calculated by using the Hamming distance
exposed in Eq. 7 and computing a distance matrix M .
POPCNT is a machine SSE4.2 instruction that is applied for
fast matching of binary codes, since it allows to efficiently
count the total number of bits which are set to one in a binary
string.

v = (dn(p1), dn(p2), dn(p3), ..., dn(pm)) (6)

Mi,j =Mj,i = POPCNT(vi ⊕ vj) (7)

C. Algorithmic proposal for visual loop closure detection

Algorithm 1 is presented for a better definition of the
proposed method for loop closure detection, which includes
our binary code calculation using disparity for an input stereo
image and the computation of its similarity with respect to
the previously analyzed scenes in a matching process.

Algorithm 1 Loop closure detection on stereo images by using binary
codes and disparity information.

Input: L,R {Left and right stereo camera images.}
gw, gh {Number of grids in width and height ((1× 1) ≡global).}
M {Accumulated distance matrix.}
v {Accumulated vector of binary codes.}

Output: M {Updated distance matrix.}
v {Updated vector of binary codes.}

Algorithm:
i← Length(v) + 1; {Current stereo image index.}
for k ← 1 to gw do

for l← 1 to gh do
dn(pi(k,l))← Calculate the binary code for stereo image (L,R)

in the grid (k, l); {See Eq. 1-5.}
vi ← vi ++ dn(pi(k,l)); {Concatenation of each grid code.}

end for
end for
for j ← 1 to i do

Mi,j ←Mj,i ← POPCNT(vi ⊕ vj); {See Eq. 7.}
end for

V. EVALUATION

A. Datasets

In our previous work [5], we used the Oxford New College
dataset [20], which is often employed in the literature [1],
[2]. We observed that our previously presented approach im-
proved the results obtained by algorithms such as FAB-MAP
or BRIEF-Gist. However, this dataset is not representative

enough, since it only has 8127 scenes (2,2 km) and there are
not enough varied environments. Due to this, in this paper
we decide to use the popular KITTI benchmark dataset [8]
for testing our new proposal.

The KITTI Odometry has 22 sequences containing a total
of 44182 stereo images (39,2 km). These sequences include
environments with different characteristics and challenging
situations such as perceptual aliasing, changes on scene, etc.
Nevertheless, there is not any specific ground-truth for loop
closure detection in this dataset. For this reason, we have
created this ground-truth, which is described in Table I.

There are 12 sequences with loop closures, 21 of them
unidirectional and 4 bidirectional in total. Bidirectional loop
closures appear when a same place is traversed in a different
direction. As stated in [2], BRIEF-Gist can not detect this
kind of loop closures and, although FAB-MAP is theoret-
ically invariant to spatial location, in practical situations
with stereo images it also can not identify bidirectional loop
closures, because stereo images do not provide a visual
perception in all directions. Currently, our approach also
can not perceive bidirectional loop closures by only using
stereo images. Therefore, they are not evaluated in this
paper, although they could be considered in future works
or if panoramic images would be used, as proposed in our
previous work [5]. Additionally, the defined ground-truth for
the KITTI Odometry also takes into account long stops of
vehicle for ignoring these frames in the evaluation.

B. Methodology
We propose an evaluation technique common to all the

tests presented in this paper for objectively comparing our
proposal against the state-of-the-art algorithms. The KITTI
Odometry dataset offers a methodology for evaluating trans-
lational and rotational errors in visual odometry. Unfor-
tunately, there is not any specific benchmarking for loop
closure detection algorithms, so we will introduce it.

Our evaluation methodology is based on precision-recall
curves obtained from M , which in our case is achieved
after the iteration of Algorithm 1 in a complete sequence of
stereo images. M is normalized by following Eq. 8. Later, a
threshold θ is applied to M for comparing it to the ground-
truth matrix G of each specific sequence. True positives are
considered when a positive of the thresholded M coincides
with a positive of G in a temporal vecinity according to
the frame rate. The final curve is computed by varying θ
in a linear distribution between 0 and 1 and calculating the
corresponding values of precision and recall. 100 values of
θ are processed to obtain well-defined curves.

Mi,j =
Mi,j

max(M)
(8)

For a better comprehension of the proposed benchmarking
methodology, an example of evaluation for the sequence 06
of the KITTI Odometry is presented in Fig. 2. With the
aim of referring to our loop closure detection algorithm, we
make allusion to this method in the tests as ABLE (Able for
Binary-appearance Loop-closure Evaluation). As it is applied
on stereo images, this specific approach is called ABLE-S.
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TABLE I
DESCRIPTION OF THE GROUND-TRUTH CREATED FOR VISUAL LOOP CLOSURE DETECTION IN THE KITTI ODOMETRY DATASET.

Sequence No. of frames Unidirectional loop closures Bidirectional loop closures Long stops
No. Initial frames Loop frames No. Initial frames Loop frames No. Stop frames

00 4541 5

0000 - 0099 4451 - 4528

0 1

0534 - 0569
0122 - 0196 1570 - 1635
0392 - 0412 2446 - 2460
0392 - 0941 3398 - 3844
2354 - 2460 3295 - 3418

02 4661 2 0933 - 1026 4205 - 4266 1 3332 - 3397 4566 - 4620 01810 - 1997 4404 - 4569

05 2761 3
0031 - 0121 2431 - 2512

0 1
2321 - 2402

0565 - 0787 1324 - 1530
0819 - 0885 2581 - 2627

06 1101 1 0000 - 0280 0835 - 1093 0 0
07 1101 1 0000 - 0013 1060 - 1067 0 1 0657 - 0732

08 4071 0 2 0075 - 0227 1640 - 1796 1 4000 - 4031
0726 - 0765 1422 - 1464

09 1591 1 0000 - 0023 1578 - 1590 0 0

13 3281 4

0000 - 0138 2152 - 2316

0 00000 - 0089 3188 - 3280
0553 - 0839 1633 - 1938
2152 - 2264 3188 - 3280

15 1901 1 0000 - 0086 1808 - 1900 0 0
16 1731 1 0000 - 0146 1614 - 1730 1 0023 - 0079 0798 - 0843 0
18 1801 1 0322 - 0493 1616 - 1800 0 0
19 4981 1 4246 - 4390 4812 - 4943 0 0

(a) Map. (b) Precision-recall curves. (c) Ground-truth.

(d) M using BRIEF-Gist. (e) M using ABLE-S with LDB. (f) M using ABLE-S with D-LDB.

Fig. 2. An example of evaluation for loop closure detection in the sequence 06 of the KITTI Odometry dataset. The distance matrices show how the
addition of gradient information (e) reduces the noise appeared around loop closure lines if only intensity is used (d). Besides, if disparity information is
added (f), perceptual aliasing is clearly decreased, as confirmed by the precision-recall curves (b).
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(a) Sequence 00. (b) Sequence 05. (c) Sequence 13.

Fig. 3. Results obtained for loop closure detection in some of the most representative sequences of the KITTI Odometry dataset.

TABLE II
COMPARISON OF SOME PERFORMANCE PARAMETERS BETWEEN THE PLACE RECOGNITION APPROACHES TESTED IN THE PRESENTED RESULTS.

Average
precision
(Seq. 00)

Average
precision
(Seq. 05)

Average
precision
(Seq. 13)

Average
precision
(All Seq.)

Average time
per description

(All Seq.)

Average time
per matching

(All Seq.)
FAB-MAP 55.50 % 80.19 % 69.04 % 70.24 % 195.27 ms 2.67 · 10−2 ms

WI-SURF (Global) 52.40 % 86.75 % 73.47 % 72.59 % 0.23 ms 1.74 · 10−3 ms

BRIEF-Gist (Global) 58.76 % 87.69 % 83.85 % 78.86 % 0.04 ms 2.35 · 10−5 ms

ABLE-S

with LDB (Global) 85.19 % 96.35 % 92.20 % 90.98 % 0.11 ms 2.29 · 10−5 ms
with LDB (Grid 3x1) 85.22 % 94.78 % 91.76 % 90.85 % 0.35 ms 8.54 · 10−5 ms
with LDB (Grid 6x2) 86.04 % 95.43 % 91.42 % 91.05 % 1.01 ms 2.68 · 10−4 ms
with LDB (Grid 24x8) 85.78 % 96.86 % 91.75 % 91.36 % 7.29 ms 1.93 · 10−3 ms
with D-LDB (Global) 91.06% 98.43% 95.38% 95.35% 7.11 ms 2.29 · 10−5 ms

VI. RESULTS

The addition of disparity in our proposal clearly improves
the results achieved in place recognition by other similar
methods based on binary codes. This can be observed if
the distance matrices presented in the evaluation shown in
Fig. 2 are compared. In the distance matrix provided by our
method using the D-LDB descriptor (see Fig. 2 (f)), it can be
shown how the noisy squares which appear around the loop
closure lines due to perceptual aliasing are clearly reduced
with respect to other global binary description approaches
such as BRIEF-Gist (see Fig. 2 (d)), which is only based
on intensity information. Our approach adding disparity also
improves the results obtained by employing the original LDB
(see Fig. 2 (e)), which only applies intensity and gradient
comparisons. All the previous affirmations are supported by
the precision-recall curves depicted in Fig. 2 (b).

Apart from the previous evaluation for the sequence 06 of
the KITTI Odometry, we show precision-recall curves for the
sequences 00, 05 and 13, which are the most representative
because they contain the highest number of loop closures.
We have obtained very satisfactory results for the different
variants of our method compared to FAB-MAP, WI-SURF
and BRIEF-Gist algorithms, as presented in Fig. 3.

For testing FAB-MAP, we use its open source imple-
mentation called OpenFABMAP [21], which is applied in
a standard configuration and conveniently trained in the

KITTI Odometry dataset. WI-SURF and BRIEF-Gist are
implemented by using the SURF and BRIEF descriptors pro-
vided by OpenCV. Our WI-SURF implementation do not add
the range mean and standard deviation to the descriptor as
proposed in [6], because we want to objectively compare our
global binary description proposal against a standard global
vector-based descriptor. In addition, we do not process results
for global binary descriptors which can be proposed by
applying local binary descriptors invariant to rotation and/or
scale such as ORB, BRISK or M-LDB. This is because,
as exposed in [2], downsampling the input images involves
smoothing and interpolation over neighboring regions that
reduces the effects of rotation and scale, so descriptors
invariant to these circumstances do not provide better results
in our case, as previously demonstrated in [5].

Table II confirms the successful results achieved by our
place recognition method in loop closure detection using bi-
nary codes and disparity information, displaying the compar-
ison between the average precision of the different algorithms
tested in the KITTI Odometry sequences 00, 05, 13 and its
mean value for all sequences. Average precision is defined as
the percentage of total area under the precision-recall curve.
Average processing times for each image description and
matching are also presented. These performance parameters
have been obtained using a computer with an Intel Core i7
2,40 GHz processor and a 8 GB RAM.
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Attending to the results depicted in Fig. 3 and Table II, the
usage of grids instead of a global binary description does not
substantially improve precision in this case and adds compu-
tational cost. The KITTI Odometry images have a resolution
of 1226x370 pixels, so we use a proportional number of grids
such as 3x1, 6x2 and 24x8, obtaining the best results with
24x8. Besides, global binary descriptors such as BRIEF-Gist
or the one proposed by our method achieve better results and
have lower processing times in matching than global vector-
based descriptors such as WI-SURF, due to the usage of the
Hamming distance instead of a matching based on L2-norm.
FAB-MAP also reaches worse results and extremely higher
processing times.

Finally, we must note that our method has a slightly higher
processing time in description using D-LDB than applying a
standard LDB or other global image description approaches
such as BRIEF-Gist or WI-SURF. This is due to the cost of
computing and processing the disparity information. How-
ever, other stereo matching algorithms faster than SGBM can
be used for speeding-up the D-LDB descriptor. In addition,
some commercial stereo cameras that already incorporate
disparity estimation on the chip can also be used, such as the
Bumblebee2. In any case, our approach using SGBM allows
to describe 141 stereo images per second, which is more
than sufficient for real-time applications. Furthermore, the
bottleneck in place recognition is associated to the processing
time in matching, which is greatly increased for each new
computed image when the number of previously analyzed
scenes is high because more matches are needed, while the
processing time in description is constant.

VII. CONCLUSIONS AND FUTURE WORKS

Along this paper, we have presented ABLE-S, demonstrat-
ing how this approach for place recognition and loop closure
detection based on binary codes and disparity information
provides a very effective performance, specially if it is com-
pared to other state-of-the-art algorithms. We have achieved
an average precision superior in about 25% to FAB-MAP,
23% to WI-SURF, 16% to BRIEF-Gist and 5% to our own
method if LDB is considered in its standard version without
using disparity. In addition, the computational cost of our
method is low due to employment of binary codes, which
allows a fast place recognition.

The challenging KITTI Odometry dataset has been em-
ployed in our tests, contributing a new ground-truth for
loop closure detection and an objective evaluation method-
ology. The ground-truth matrices generated for each KITTI
Odometry sequence and the code for benchmarking will be
published with the aim of standardizing it, jointly with our
place recognition source code and extra video material1.

The future objective of our research is to achieve a
robust life-long visual localization. Recently, this topic has
acquired a great importance in visual navigation, and several
interesting works have appeared in the last year considering
problems such as visual place recognition at different hours
of day [22] or during all the seasons [23].

1All available from http://www.robesafe.com/personal/roberto.arroyo/
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