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Abstract— This paper describes an algorithm to detect the 

road lanes based on an unsupervised and adaptive classifier.  

We have selected this classifier because in the road we do not 

know the parameters of lanes, although we know that lanes are 

there, only they need to be classified. First of all, we tested and 

measured the brightness of the lanes of the road in many 

videos. Generally, the lines on the road are white. We used the 

HSV image and we improved the region of study. Then, we 

used a Hough transform which yields a set of possible lines. 

These lines have to be classified.  The classifier starts with 

initial parameters because we suppose that the vehicle is on 

road and in the center of the lane. There are two classes, the 

first one is the left road line and the second one is the right 

road line. Each line has two parameters that are: middle point 

of line and the line slope. These parameters will be changing in 

order to adjust to the real lanes. A tensor holds the two lines, 

so these lines will not separate more than the tensor allows. A 

Kalman filter estimates the new class’s parameters and 

improves the tracking of the lanes. Finally, we use a mask in 

order to highlight the lane and show to the user a better image.  

 Keywords- Lanes detection, lanes classifiers, Kalman filter.  

 

I. INTRODUCTION 

There is a high requirement in the car industries of 

implementing road lanes identifier systems on board. This is 

to give more safety to passengers. Because this, the vision-

based lane detection has been an interesting research area. 

Nowadays, most of applications are make off-line. 

There are many techniques for detecting the road lanes 

and most of them use vision with mono-camera. Although, 

using a stereo camera is being common. In this area there are 

two types of detections, the road detection and the lane road 

detection. The approaches in these fields in the last 5 years is 

surveyed in [1]. The DARPA grand challenge 2006 helped to 

make significant progress for commercial driver’s assistance 

systems. In this challenge vehicles has a lot of sensors, to 

detect road, signs, edges, traffic lights, and of course the lane 

marks. However, researches have detected that the 

bottleneck in this systems is the road perception [1].  

The researches in  [2] show how to detect the road region 

based on homography estimation. They use a set of cameras 

and using a three module algorithm can detect the road. The 

work in [3] also uses a stereo camera for detecting the road 

with the 3D information. Using a stereo camera can give 

some advantages over a monocular camera, but in normal 

applications to use a monocular camera is cheaper. On the 

other hand, it is better to make low cost applications in order 

to implement them in smart phones, tablets or things like 

these, which will be our future work. 

A more simple system is showed in [4]. This is based on 

a roads classifier which decides if the image is a road or not. 

This classifier has a data base of many kinds of roads. 

 Also, there are many models and researches to detect the 

road lanes. Only 8 % of the works are in real time 

algorithms. It is still complex to implement a real time 

algorithm, because for obtaining better results good and big 

processors are necessary. 

Using the vanishing point is a way to find the lanes, for 

example [5]. This work has 94% of true detections, but it 

does not work in real time. 

When a lane is not uniform or is a curve, it is more 

difficult to use the Hough transformation or the basic 

RANSAC. In [6] is presented a solution for curve lanes and 

in [7] a solution for heterogeneous lanes. The work in [8] is 

based on RANSAC to get the road lanes. This work uses a 

special camera which is able to collect 500 frames per 

second. This is used for high speed vehicles. 

To detect the road lanes is necessary to consider the 

environmental conditions, like the light, rain, brightness, etc. 

For example, the researches in [9] present a solution for 

night conditions. This is based on the light reflections of the 

lines of the road. Then, a Support Vector Machine (SVM) 

classifies these lines. 

In some cases it is necessary to know the Euler angles of 

the camera, like in [2], [5] y [8], but in this work we do not 

use these angles. First of all, these angles have to be 
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calibrated and a common user does not have time to do that. 

Do not forget that we will implement this work in a smart 

phone in a future work. But, like other works, for example 

[9],  our algorithm requires an initial condition. The camera 

should be focusing the road and the vanishing point has to be 

in the middle of the screen. We also used a Region of 

Interest (ROI) in order to reduce the information to process, 

[9] and [10].  

To the user it is important to know the relative vehicle 

position in the road. However, this information must not 

distract the driver. We have implemented a simple visual 

effect that shows in the screen the vehicle deviation from the 

middle lane. It is not in meters but in percentage.  

    Our algorithm has three phases that are: The initial 

treatment of the image, the detection and lines classification 

and the filtering and image masked. Section 2 shows the 

proposed algorithm and section 3 shows the experimental 

result. 

 

II. PROPOSED ALGORITHM 

The algorithm architecture is done in three phases which 

are depicted in Fig. 1.  

 

Figure 1. Algorithm architecture. 

 

In Phase 1 we make a previous treatment of the input 

image. We measure the image brightness, then we define a 

ROI, and finally the new image is filtered to detect the lanes 

road in a binary image.  

 In Phase 2 a Hough transform is applied to the image. The 

result lines are classified by an unsupervised classifier. Then, 

a Kalman filter reduces the noise in the parameters of the 

lines of each class. These lines are showed in the original 

image and they built the road. 

The vehicle position is estimated in the last phase and the 

real lanes of the road are highlighted. An indicator shows the 

driver the deviation on the screen.  

 

 A. Phase 1.Image preparation. 

In this step the algorithm prepares the image to make the 

work simpler for the next phases. First, the image is 

transformed from RGB to HSV. Then, it calculates the 

brightness of the image which helps to know if it 

corresponds to day, afternoon or night. We have obtained 

some experimental results about the color of the lanes, which 

in most cases are black. The brightness lane is generally 

higher than the other colors in the image, it is 0.87/1. 

However, it is necessary to define a ROI in the lower half 

image. The brightness channel is the new image. Then, it is 

changed from HSV to Gray image with (1), where � is the 

RGB NxM input matrix image,	��� �� is the pixel position in � 
row and �  column, �  is the the V channel from the HSV 

image and  � is the newer gray image.  

In this step we proposed a new approach. Most of  the 

researchers work with the RGB or Gray input, but we work 

with the brightness’s image instead.  
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In (2) �  is the brightness image average and it is 

calculates from the ROI. In the next phases we work in the 

same region. 

We can find the lanes pixels with the filter presented in 

(4). This is based on the filter (3) proposed in [10], but it has 

been improved. In (4) we have added a contrast between the 

filter responses in each pixel and its brightness value. If the 

filter finds a lane pixel and the brightness is lower than a 

minimal, the pixel is a lane pixel. In (3) and (4), � is the 

filtered image, � is the image after the improved filter and � 

is the number of pixels around the ��� �	 pixel. The researches 

in  [10] propose to try different values for � and to select the 

best results. In our case � � 	�. 
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Figure 2 shows result from the steps in phase 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. Phase 1 result. (a) Input image. (b) Gray brightness 

image. (c) Filtered image. 

 

B. Phase2. Lines classifier and road builder. 

    The second stage in our algorithm consists of two steps 

that are: the lines classifier and the road builder.  

The first step in this phase is to apply a Hough transform 

at the last filtered image which is showed in Fig. 2(c). We 

consider that this transformation is well known, so we do not 
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explain its functionality, being the most important that we 

obtain a set of lines which may represent the lanes road or 

not. In Fig. 2(c) we can see the vehicle in the center lane and 

between dashed lines. Applying the OpenCV Hough 

transform to detect the lines we can set the parameter which 

allows to find dashed lines. The length parameter sets the 

minimal length of the line. We have measured the maximal 

gaps in dashed lines and they are around 30 pixels.    

The Hough transform result is represented in (5), where 	!  

is the lines set, " is the number of elements and !
�
 is the � 

line placed in the initial point �
�
 and in the end point �


. 
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Then, an unsupervised classifier has been used to find the 

optimal lines in the set !. Here, we defined initial conditions 

for each parameter in the classes. There are two classes in the 

classifier, Class 1 for the left line and Class 2 for the right 

line, defined by %� and %� respectively. 

 

There are two parameters for each class. The first one is 

the middle point of the line and the second one is the slope of 

the line. The initial conditions of these parameters are 

defined in (6), (7), (8) and (9). 
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Where, &'� is the middle point of the class �, � can be the 

first class or the second one, �
�����

 is the numbers of the 

columns in the image, 	�
�����

 is the number of rows and 

�'� is the slope of the class � line. The scaled values in (6) 

and (7) have been obtained by average from 20 pictures. 

The two classes, %�	and C� , with their parameters are 

defined in (10) and (11) respectively. 

 

%��&'���'��    (10) 

%��&'���'�	    (11) 

 

The parameters change for each frame to adjust to the real 

lines on the road. We used an adaptive method for this deal 

which kept closer the class lines parameters to the real lines. 

If  )
�
	 line satisfies (12) it will be classified in %� class, if 

not, line will be discarded. 
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Where, *
������

 is the euclidean distance from the middle 

)
�

  point to &'�  point in the %�  class, *
�����

 is the 

euclidean distance from the slope )
�

 line to �'� slope in %� 

class, *
�
���

 is the minimal distance between middle )
�

  

point and  &'�  and *
�
���

  is the minimal distance 

between slopes. The minimal distance *
�
���

 is a constant 

whose value is 1.5. The minimal points distance is a dynamic 

value and it starts with an 85% of the diagonal. Both 

minimal values have been defined by heuristic methods. The 

second value decreases easily in the next frames.  

The &'� parameters are updated in each new image. In 

(13) we describe this method. 
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Where, α is the decision factor,	&'+
�

 is the middle point in 

%� class for actual , image, &!


 is the parameter middle 

point for the � line classified, &'+
���

 is the middle point 

for the next , � �  image  and �	)  is the number of lines 

clasified in the %� class. 

The α factor is in the (0,1) range and it is defined in (14). 

This is a weight which depends on the -
���
�����

�

 distance 

between the middle point from the line in study and the class 

point. If this distance is short the weight of this point will be 

higher in the next parameter class. Otherwise, if the point is 

very far its contribution will be lower.  

This factor is based on a parabolic function. 
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Figure 3. Lines classifier. (a) Input set. (b) Lines classified. 

 

In Fig. 3 (a) we show a 3D input data set. In x axes are the 

columns, in y axes are the rows and in the z axes is the slope. 

The classified data is showed in Fig. 3 (b), where the lines 

blue and green are the classes %�	and C� respectively and it 

is also showed the elements classified in each class. We can 

see the initial middle points and its path to the final place.  
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Here, the &'�	parameters for each class and their adjust 

to the real lines are visible.  

Although in the Fig. 3 (a) the input set can seem very easy 

to classify, we have followed a previous steps to obtain this 

simple data set. For this example we stored a data set of lines 

from images in a real road but are not the same images in 

Fig. 1 or Fig. 2.   

 

Figure 4 shows the first frame and the lanes road 

detection. In 4 (a) it is showed the first frame in which we 

can see the initial conditions of parameters and the lines 

which represents the classes. The %� class is represented on 

the left side and the %� class is on the right side, both in blue 

color and their middle points in red. The green lines are the 

ones classified in the classes %� or %�. The middle point for 

each line is also painted. In the border of the image there are 

some middle points of lines which have not been classified 

in any class. 

In the second frame, Fig. 4(b), the parameters are closer to 

real lanes and in the fourth frame the estimated lines are 

almost over the real lanes. In the next frames the lines will be 

closer to real lanes.  

However, in this paper we do not solve the curve lines 

problem, although our work can find the estimated lanes 

road in this cases too, but without curves. 

The Tensor described in (15) holds the lines in their 

middle points with -
�
 . This is the distance between points 

like (16) describes. The Tensor avoids that the estimated 

road increases its width. This can happen if there is a lane 

derivation to the right side of the road and appears a new line 

on the road. The Tensor /
�
 is defined by the points &� and 

&�  in (15). The middle points &'+
�

 of each line are 

validated by 0-, which is the derivate of the distance in time 

and 1 is the minimal 0- that it may change (17). 
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Finally, in this phase it is applied the well known Kalman 

filter, whose design is described in a previous work 

presented in [11] an based on [12]. This filter is applied to 

the classifier parameters, these are: the middle points and the 

slopes in each class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Phase3. Vehicle position estimation and highlighted 

lanes. 

In this phase we obtain the estimated position of the 

vehicle on the road and, it is highlighted the lanes of the road 

in the image to help the user. 

For the first step we use a trigonometric method. As we 

had described, we do not use the Euler angles to place the 

camera into the vehicle, so, the estimated position is relative 

and it is not given in meters but in percentage like a visual 

image in the image with warnings if the vehicle is on the 

edge of the road. 

The angle formed by the two lines of the estimated road is 

bisected. The bisector cut the lower line of the image in the 

Pv point.  Then, with (18), we found the difference 0& 

between Pv and the middle point Pi in x axes in the ���� �� 
image. 

Figure 5 shows the described process. Here, the bisector is 

in black and it cuts the x axes in Pv point. The lines road are 

in blue.  

0& � &� � &3     (18) 

 

 

Figure 5. Vehicle position estimation. 

 

If the Pv point is higher than point Pi in x axes, like in 

Fig.5, the 0& difference will be negative. So, a negative 0& 

means that the vehicle is on the left side of the lane road. It 

has been measured the distance from Pi to Pl1 to know how 

far the vehicle is to the center of the road. The Pl1 or Pl2 

points can be out of the image, in this case it is necessary to 

find it out of the image, like in Fig. 5 the Pl2 point. 

The second step in this phase is to highlight the real road 

lanes in the image. For this, we built a binary image ���� �	 
in black, in which are placed the estimated lines of the road 

in sticky white. Then, we applied an AND logic operator 

between the binary image ���� �	  and the filtered image 

 

     

           (a)                      (b)     (c) 

  

Figure 4. Lines Classifier. (a) Initial values of parameters, First frame. (b) Second frame. (c) Fourth frame. 
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���� �	. The ���� �	 image is the results of this last process 

and it is described in (19). 

 

 ���� �	 � ���� �	456	���� ��   (19) 

 

The pixels in ���� �	 image have logic values. Then, these 

pixels are placed in the input image as it is described in (20), 

where, �"��� �	 is the highlighted image.  
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    (20) 

 

The parameter 7898: in (20) is the RGB value to highlight 

the lane. We chose RGB (255,0,0), which is a full red color. 

The user can see the real highlighted road lanes in red and 

the lanes estimated in blue with their center points in red, as 

we show in Fig. 6.   

 

 

Figure 6. Lanes Highlighted in red. 

 

III. EXPERIMETAL RESULTS 

We tested the proposed algorithm in 5 videos, each one 

in a different environmental condition. The first is in the 

morning, the second in the middle day, the third in the 

afternoon, the forth at night and the last video is in a busy 

road.  We show the detection results in Table 1. 

TABLE I.  EXPERIMETALS RESULTS IN DIFERENT ENVIROMENTAL 

CONDITIONS 

Video Condition Trues frames (%)  detection ready (frame) 

1 Morning 88 10 

2 Middle day 90 7 

3 Afternoon 82 11 

4 Night 89 6 

5 Traffic 85 10 

 

These results show that the algorithm work better in 

middle light with the best light conditions. At night 

conditions there is also a good response. These results are 

good because we have prepared the image in phase 1 and the 

work in the next phases is easier. The worst detection is in 

the afternoon video, this is because in this time of day the 

sun light can hit the camera directly, and there are some 

problems to detect the lanes. If the conditions are good then 

the road detection will be ready in a few frames like in video 

2 or 3. However, the algorithm is slow to detect the lanes in 

traffic conditions. If the detection fails, the process is 

restarted. Figure 7 shows the night video and the lanes road 

detection. The green rows indicate the vehicle deviation and 

the user should correct the position to left. If the position is 

further the arrows will change to red color to warn the user. 

The number of arrows depends on the deviation. 

 

IV. CONCLUSIONS AND FUTURE WORKS 

In this paper we proposed a new approach to detect the 

lanes road based on a monocular camera, Hough transform 

and an unsupervised classifier.  

First of all, we have used a mono camera and our 

algorithm can be implemented in smart-phones or things 

like this. 

We used three phases to obtain the true lanes. This 

algorithm has been tested in different videos and the results 

are good, as we show in Table 1, Fig. 6 and Fig. 7. 

    In phase 1 we used the brightness of image to know the 

environmental conditions. It is easier to find the lane marks 

using this method because the marks pixels have more 

brightness than the other ones.  

Also, we improved a filter to detect the color lanes. 

 

 

 

 

 

 

 

 

 

Figure 7. Night test. Image after phase 3. 

    The unsupervised classifier, in phase 2, allows finding the 

best lines to build the estimated road.  

An unsupervised classifier is very useful when the elements 

to classify and the parameters of the classes are changing.      

 The Kalman filter reduces the gaussian noise from an 

estimated road and it allows tracking the lane.  

    The lanes highlighted and the vehicle positions help to 

the driver to be in the center of the road. If the driver could 

not see the image, he can hear a warning sound if the 

vehicle is on the road edge, but it will be implemented in 

next works.  

    Also, in future works, we propose to improve the 

detection in lane changes. We have started to reduce the 

algorithm and we will work in an interface to the user in 

order to make an application for Android SO. 

Our entire algorithm has been implemented in OpenCv. 
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