
Lanes Detection Based on Unsupervised and Adaptive Classifier

Andrés F. Cela

Department of Automation and Industrial Control

Escuela Politécnica Nacional

Quito, Ecuador

andres_cela@ieee.org

Franklin L. Sánchez

Department of Electronics

Instituto Tecnológico Superior Sucre

Quito, Ecuador

fsanchez@tecnologicosucre.edu.ec

Luis M. Bergasa

Department of Electronics

University of Alcalá

Alcalá de Henares, España

bergasa@depeca.uah.es

Marco A. Herrera

Center for Automation and Robotics

Universidad Politécnica de Madrid

Madrid, Spain

marco.herrera@ieee.org

Abstract— This paper describes an algorithm to detect the

road lanes based on an unsupervised and adaptive classifier.

We have selected this classifier because in the road we do not

know the parameters of lanes, although we know that lanes are

there, only they need to be classified. First of all, we tested and

measured the brightness of the lanes of the road in many

videos. Generally, the lines on the road are white. We used the

HSV image and we improved the region of study. Then, we

used a Hough transform which yields a set of possible lines.

These lines have to be classified. The classifier starts with

initial parameters because we suppose that the vehicle is on

road and in the center of the lane. There are two classes, the

first one is the left road line and the second one is the right

road line. Each line has two parameters that are: middle point

of line and the line slope. These parameters will be changing in

order to adjust to the real lanes. A tensor holds the two lines,

so these lines will not separate more than the tensor allows. A

Kalman filter estimates the new class’s parameters and

improves the tracking of the lanes. Finally, we use a mask in

order to highlight the lane and show to the user a better image.

 Keywords- Lanes detection, lanes classifiers, Kalman filter.

I. INTRODUCTION

There is a high requirement in the car industries of

implementing road lanes identifier systems on board. This is

to give more safety to passengers. Because this, the vision-

based lane detection has been an interesting research area.

Nowadays, most of applications are make off-line.

There are many techniques for detecting the road lanes

and most of them use vision with mono-camera. Although,

using a stereo camera is being common. In this area there are

two types of detections, the road detection and the lane road

detection. The approaches in these fields in the last 5 years is

surveyed in [1]. The DARPA grand challenge 2006 helped to

make significant progress for commercial driver’s assistance

systems. In this challenge vehicles has a lot of sensors, to

detect road, signs, edges, traffic lights, and of course the lane

marks. However, researches have detected that the

bottleneck in this systems is the road perception [1].

The researches in [2] show how to detect the road region

based on homography estimation. They use a set of cameras

and using a three module algorithm can detect the road. The

work in [3] also uses a stereo camera for detecting the road

with the 3D information. Using a stereo camera can give

some advantages over a monocular camera, but in normal

applications to use a monocular camera is cheaper. On the

other hand, it is better to make low cost applications in order

to implement them in smart phones, tablets or things like

these, which will be our future work.

A more simple system is showed in [4]. This is based on

a roads classifier which decides if the image is a road or not.

This classifier has a data base of many kinds of roads.

 Also, there are many models and researches to detect the

road lanes. Only 8 % of the works are in real time

algorithms. It is still complex to implement a real time

algorithm, because for obtaining better results good and big

processors are necessary.

Using the vanishing point is a way to find the lanes, for

example [5]. This work has 94% of true detections, but it

does not work in real time.

When a lane is not uniform or is a curve, it is more

difficult to use the Hough transformation or the basic

RANSAC. In [6] is presented a solution for curve lanes and

in [7] a solution for heterogeneous lanes. The work in [8] is

based on RANSAC to get the road lanes. This work uses a

special camera which is able to collect 500 frames per

second. This is used for high speed vehicles.

To detect the road lanes is necessary to consider the

environmental conditions, like the light, rain, brightness, etc.

For example, the researches in [9] present a solution for

night conditions. This is based on the light reflections of the

lines of the road. Then, a Support Vector Machine (SVM)

classifies these lines.

In some cases it is necessary to know the Euler angles of

the camera, like in [2], [5] y [8], but in this work we do not

use these angles. First of all, these angles have to be

2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks

978-0-7695-5042-8/13 $26.00 © 2013 IEEE

DOI 10.1109/CICSYN.2013.40

228

calibrated and a common user does not have time to do that.

Do not forget that we will implement this work in a smart

phone in a future work. But, like other works, for example

[9], our algorithm requires an initial condition. The camera

should be focusing the road and the vanishing point has to be

in the middle of the screen. We also used a Region of

Interest (ROI) in order to reduce the information to process,

[9] and [10].

To the user it is important to know the relative vehicle

position in the road. However, this information must not

distract the driver. We have implemented a simple visual

effect that shows in the screen the vehicle deviation from the

middle lane. It is not in meters but in percentage.

 Our algorithm has three phases that are: The initial

treatment of the image, the detection and lines classification

and the filtering and image masked. Section 2 shows the

proposed algorithm and section 3 shows the experimental

result.

II. PROPOSED ALGORITHM

The algorithm architecture is done in three phases which

are depicted in Fig. 1.

Figure 1. Algorithm architecture.

In Phase 1 we make a previous treatment of the input

image. We measure the image brightness, then we define a

ROI, and finally the new image is filtered to detect the lanes

road in a binary image.

 In Phase 2 a Hough transform is applied to the image. The

result lines are classified by an unsupervised classifier. Then,

a Kalman filter reduces the noise in the parameters of the

lines of each class. These lines are showed in the original

image and they built the road.

The vehicle position is estimated in the last phase and the

real lanes of the road are highlighted. An indicator shows the

driver the deviation on the screen.

 A. Phase 1.Image preparation.

In this step the algorithm prepares the image to make the

work simpler for the next phases. First, the image is

transformed from RGB to HSV. Then, it calculates the

brightness of the image which helps to know if it

corresponds to day, afternoon or night. We have obtained

some experimental results about the color of the lanes, which

in most cases are black. The brightness lane is generally

higher than the other colors in the image, it is 0.87/1.

However, it is necessary to define a ROI in the lower half

image. The brightness channel is the new image. Then, it is

changed from HSV to Gray image with (1), where � is the

RGB NxM input matrix image,	��� �� is the pixel position in �
row and � column, � is the the V channel from the HSV

image and � is the newer gray image.

In this step we proposed a new approach. Most of the

researchers work with the RGB or Gray input, but we work

with the brightness’s image instead.

���� �	 �
��������� ��� (1)

� � �� ���
�� ∑ ∑ ���� ���

���

��	

��
 (2)

In (2) � is the brightness image average and it is

calculates from the ROI. In the next phases we work in the

same region.

We can find the lanes pixels with the filter presented in

(4). This is based on the filter (3) proposed in [10], but it has

been improved. In (4) we have added a contrast between the

filter responses in each pixel and its brightness value. If the

filter finds a lane pixel and the brightness is lower than a

minimal, the pixel is a lane pixel. In (3) and (4), � is the

filtered image, � is the image after the improved filter and �

is the number of pixels around the ��� �	 pixel. The researches

in [10] propose to try different values for � and to select the

best results. In our case � � 	�.

������	��������	��������	��������	

�
�������	��������	
	
	 (3)

���� �	 � ���	 � �
�� ���� �	 � �

	���� ��� ���� �	 �

 (4)

Figure 2 shows result from the steps in phase 1.

 Figure 2. Phase 1 result. (a) Input image. (b) Gray brightness

image. (c) Filtered image.

B. Phase2. Lines classifier and road builder.

 The second stage in our algorithm consists of two steps

that are: the lines classifier and the road builder.

The first step in this phase is to apply a Hough transform

at the last filtered image which is showed in Fig. 2(c). We

consider that this transformation is well known, so we do not

(a) (b)

(c)

229

explain its functionality, being the most important that we

obtain a set of lines which may represent the lanes road or

not. In Fig. 2(c) we can see the vehicle in the center lane and

between dashed lines. Applying the OpenCV Hough

transform to detect the lines we can set the parameter which

allows to find dashed lines. The length parameter sets the

minimal length of the line. We have measured the maximal

gaps in dashed lines and they are around 30 pixels.

The Hough transform result is represented in (5), where 	!

is the lines set, " is the number of elements and !
�
 is the �

line placed in the initial point �
�
 and in the end point �

.

! � �!
�
#�

�
� �

$� !

�
#�

�
� �

$� � � !

���
#�

�
� �

$� !

�
��

�
� �

�� (5)

Then, an unsupervised classifier has been used to find the

optimal lines in the set !. Here, we defined initial conditions

for each parameter in the classes. There are two classes in the

classifier, Class 1 for the left line and Class 2 for the right

line, defined by %� and %� respectively.

There are two parameters for each class. The first one is

the middle point of the line and the second one is the slope of

the line. The initial conditions of these parameters are

defined in (6), (7), (8) and (9).

&'� � ��
�
� (

�
	 � ���� � �

�����
� ��� � �

�����
� (6)

&'� � ��
�
� (

�
	 � ���� � �

�����
� ��� � �

�����
� (7)

�'� � ��
�����

��
�����

 (8)

�'� � �
�����

��
�����

 (9)

Where, &'� is the middle point of the class �, � can be the

first class or the second one, �
�����

 is the numbers of the

columns in the image, 	�
�����

 is the number of rows and

�'� is the slope of the class � line. The scaled values in (6)

and (7) have been obtained by average from 20 pictures.

The two classes, %�	and C� , with their parameters are

defined in (10) and (11) respectively.

%��&'���'�� (10)

%��&'���'�	 (11)

The parameters change for each frame to adjust to the real

lines on the road. We used an adaptive method for this deal

which kept closer the class lines parameters to the real lines.

If)
�
	 line satisfies (12) it will be classified in %� class, if

not, line will be discarded.

�
�
� �

�
		��	��

������
� �

�����
	�	�	�

����
� �

�����
 (12)

Where, *
������

 is the euclidean distance from the middle

)
�

 point to &'� point in the %� class, *
�����

 is the

euclidean distance from the slope)
�

 line to �'� slope in %�

class, *
�
���

 is the minimal distance between middle)
�

point and &'� and *
�
���

 is the minimal distance

between slopes. The minimal distance *
�
���

 is a constant

whose value is 1.5. The minimal points distance is a dynamic

value and it starts with an 85% of the diagonal. Both

minimal values have been defined by heuristic methods. The

second value decreases easily in the next frames.

The &'� parameters are updated in each new image. In

(13) we describe this method.

��
	
�

� ��
��

∑ ��� � ��
��
	
� �� 	 ��
��

�
�
�

�	�

���
 (13)

Where, α is the decision factor,	&'+
�

 is the middle point in

%� class for actual , image, &!

 is the parameter middle

point for the � line classified, &'+
���

 is the middle point

for the next , � � image and �) is the number of lines

clasified in the %� class.

The α factor is in the (0,1) range and it is defined in (14).

This is a weight which depends on the -
���
�����

�

 distance

between the middle point from the line in study and the class

point. If this distance is short the weight of this point will be

higher in the next parameter class. Otherwise, if the point is

very far its contribution will be lower.

This factor is based on a parabolic function.

. � � � �-
���
�����

�

����
	
 (14)

Figure 3. Lines classifier. (a) Input set. (b) Lines classified.

In Fig. 3 (a) we show a 3D input data set. In x axes are the

columns, in y axes are the rows and in the z axes is the slope.

The classified data is showed in Fig. 3 (b), where the lines

blue and green are the classes %�	and C� respectively and it

is also showed the elements classified in each class. We can

see the initial middle points and its path to the final place.

(a)

(b)

0

0.2

0.4

0.6

0.8

1
0.5

0.6

0.7

0.8

0.9

-1

-0.5

0

0.5

1

Rows
y

 (%)

Set

Cols
x

 (%)

S
lo
p
e

0 0.2 0.4 0.6 0.8 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Clasiffied Set

Cols (%)

R
o
w

s
y

(
%

)

Estimated

Left Lane

Estimated

Right Lane

Lines clasiffied

in Class C1

Lines clasiffied

in Class C2

Initial Point C2
Initial Point C1

230

Here, the &'�	parameters for each class and their adjust

to the real lines are visible.

Although in the Fig. 3 (a) the input set can seem very easy

to classify, we have followed a previous steps to obtain this

simple data set. For this example we stored a data set of lines

from images in a real road but are not the same images in

Fig. 1 or Fig. 2.

Figure 4 shows the first frame and the lanes road

detection. In 4 (a) it is showed the first frame in which we

can see the initial conditions of parameters and the lines

which represents the classes. The %� class is represented on

the left side and the %� class is on the right side, both in blue

color and their middle points in red. The green lines are the

ones classified in the classes %� or %�. The middle point for

each line is also painted. In the border of the image there are

some middle points of lines which have not been classified

in any class.

In the second frame, Fig. 4(b), the parameters are closer to

real lanes and in the fourth frame the estimated lines are

almost over the real lanes. In the next frames the lines will be

closer to real lanes.

However, in this paper we do not solve the curve lines

problem, although our work can find the estimated lanes

road in this cases too, but without curves.

The Tensor described in (15) holds the lines in their

middle points with -
�
 . This is the distance between points

like (16) describes. The Tensor avoids that the estimated

road increases its width. This can happen if there is a lane

derivation to the right side of the road and appears a new line

on the road. The Tensor /
�
 is defined by the points &� and

&� in (15). The middle points &'+
�

 of each line are

validated by 0-, which is the derivate of the distance in time

and 1 is the minimal 0- that it may change (17).

/
�
� �&���� (�&���� (� � �&'�

�
�&'�

�
� (15)

-
�
� *̅�&��&�� (16)

&'+
�
� �

&'+
�
				0- � 1

&'+
���

			0- 1

 (17)

Finally, in this phase it is applied the well known Kalman

filter, whose design is described in a previous work

presented in [11] an based on [12]. This filter is applied to

the classifier parameters, these are: the middle points and the

slopes in each class.

C. Phase3. Vehicle position estimation and highlighted

lanes.

In this phase we obtain the estimated position of the

vehicle on the road and, it is highlighted the lanes of the road

in the image to help the user.

For the first step we use a trigonometric method. As we

had described, we do not use the Euler angles to place the

camera into the vehicle, so, the estimated position is relative

and it is not given in meters but in percentage like a visual

image in the image with warnings if the vehicle is on the

edge of the road.

The angle formed by the two lines of the estimated road is

bisected. The bisector cut the lower line of the image in the

Pv point. Then, with (18), we found the difference 0&

between Pv and the middle point Pi in x axes in the ���� ��
image.

Figure 5 shows the described process. Here, the bisector is

in black and it cuts the x axes in Pv point. The lines road are

in blue.

0& � &� � &3 (18)

Figure 5. Vehicle position estimation.

If the Pv point is higher than point Pi in x axes, like in

Fig.5, the 0& difference will be negative. So, a negative 0&

means that the vehicle is on the left side of the lane road. It

has been measured the distance from Pi to Pl1 to know how

far the vehicle is to the center of the road. The Pl1 or Pl2

points can be out of the image, in this case it is necessary to

find it out of the image, like in Fig. 5 the Pl2 point.

The second step in this phase is to highlight the real road

lanes in the image. For this, we built a binary image ���� �	
in black, in which are placed the estimated lines of the road

in sticky white. Then, we applied an AND logic operator

between the binary image ���� �	 and the filtered image

 (a) (b) (c)

Figure 4. Lines Classifier. (a) Initial values of parameters, First frame. (b) Second frame. (c) Fourth frame.

231

���� �	. The ���� �	 image is the results of this last process

and it is described in (19).

 ���� �	 � ���� �	456	���� �� (19)

The pixels in ���� �	 image have logic values. Then, these

pixels are placed in the input image as it is described in (20),

where, �"��� �	 is the highlighted image.

�"��� �	 � �
���� �										���� �	 � �

7898:					���� �	 � �

 (20)

The parameter 7898: in (20) is the RGB value to highlight

the lane. We chose RGB (255,0,0), which is a full red color.

The user can see the real highlighted road lanes in red and

the lanes estimated in blue with their center points in red, as

we show in Fig. 6.

Figure 6. Lanes Highlighted in red.

III. EXPERIMETAL RESULTS

We tested the proposed algorithm in 5 videos, each one

in a different environmental condition. The first is in the

morning, the second in the middle day, the third in the

afternoon, the forth at night and the last video is in a busy

road. We show the detection results in Table 1.

TABLE I. EXPERIMETALS RESULTS IN DIFERENT ENVIROMENTAL

CONDITIONS

Video Condition Trues frames (%) detection ready (frame)

1 Morning 88 10

2 Middle day 90 7

3 Afternoon 82 11

4 Night 89 6

5 Traffic 85 10

These results show that the algorithm work better in

middle light with the best light conditions. At night

conditions there is also a good response. These results are

good because we have prepared the image in phase 1 and the

work in the next phases is easier. The worst detection is in

the afternoon video, this is because in this time of day the

sun light can hit the camera directly, and there are some

problems to detect the lanes. If the conditions are good then

the road detection will be ready in a few frames like in video

2 or 3. However, the algorithm is slow to detect the lanes in

traffic conditions. If the detection fails, the process is

restarted. Figure 7 shows the night video and the lanes road

detection. The green rows indicate the vehicle deviation and

the user should correct the position to left. If the position is

further the arrows will change to red color to warn the user.

The number of arrows depends on the deviation.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a new approach to detect the

lanes road based on a monocular camera, Hough transform

and an unsupervised classifier.

First of all, we have used a mono camera and our

algorithm can be implemented in smart-phones or things

like this.

We used three phases to obtain the true lanes. This

algorithm has been tested in different videos and the results

are good, as we show in Table 1, Fig. 6 and Fig. 7.

 In phase 1 we used the brightness of image to know the

environmental conditions. It is easier to find the lane marks

using this method because the marks pixels have more

brightness than the other ones.

Also, we improved a filter to detect the color lanes.

Figure 7. Night test. Image after phase 3.

 The unsupervised classifier, in phase 2, allows finding the

best lines to build the estimated road.

An unsupervised classifier is very useful when the elements

to classify and the parameters of the classes are changing.

 The Kalman filter reduces the gaussian noise from an

estimated road and it allows tracking the lane.

 The lanes highlighted and the vehicle positions help to

the driver to be in the center of the road. If the driver could

not see the image, he can hear a warning sound if the

vehicle is on the road edge, but it will be implemented in

next works.

 Also, in future works, we propose to improve the

detection in lane changes. We have started to reduce the

algorithm and we will work in an interface to the user in

order to make an application for Android SO.

Our entire algorithm has been implemented in OpenCv.

232

REFERENCES

[1] A. B. Hillel, R. Lerner, D. Levi, y G. Raz, «Recent progress in road

and lane detection: a survey», Mach. Vis. Appl., pp. 1-19.

[2] C. Guo y S. Mita, «Drivable road region detection based on

homography estimation with road appearance and driving state

models», en 4th International Conference on Autonomous Robots

and Agents, 2009. ICARA 2009, 2009, pp. 204-209.

[3] J. M. Alvarez, T. Gevers, y A. M. Lopez, «3D Scene priors for road

detection», en 2010 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2010, pp. 57-64.

[4] J. M. A. Alvarez, T. Gevers, y A. M. Lopez, «Vision-based road

detection using road models», en 2009 16th IEEE International

Conference on Image Processing (ICIP), 2009, pp. 2073-2076.

[5] J.-W. Kim, T.-H. Kim, y K.-H. Jo, «Traffic road line detection

based on the vanishing point and contour information», en 2011

Proceedings of SICE Annual Conference (SICE), 2011, pp. 495-

498.

[6] E. R. M. Faizal y H. M. A. H. Mansor, «Virtual Mid-Line

Detection on Curve Road for User Guidance Using Simulation

Model», en International Conference on Computer Technology and

Development, 2009. ICCTD ’09, 2009, vol. 1, pp. 24-27.

[7] G. Mastorakis y E. R. Davies, «Improved line detection algorithm

for locating road lane markings», Electron. Lett., vol. 47, n.
o

 3, pp.

183-184, 2011.

[8] D. Fontanelli, M. Cappelletti, y D. Macii, «A RANSAC-based fast

road line detection algorithm for high-speed wheeled vehicles», en

2011 IEEE Instrumentation and Measurement Technology

Conference (I2MTC), 2011, pp. 1-6.

[9] F. M. Sebdani y H. Pourghassem, «A robust and real-time road line

extraction algorithm using hough transform in intelligent

transportation system application», en 2012 IEEE International

Conference on Computer Science and Automation Engineering

(CSAE), 2012, vol. 3, pp. 256-260.

[10] M. Nieto, J. A. Laborda, y L. Salgado, «Road environment

modeling using robust perspective analysis and recursive Bayesian

segmentation», Mach. Vis. Appl., vol. 22, n.
o

 6, pp. 927-945, nov.

2011.

[11] A. Cela, J. Yebes, R. Arroyo, L. Bergasa, R. Barea, y E. López,

«Complete Low-Cost Implementation of a Teleoperated Control

System for a Humanoid Robot», Sensors, vol. 13, n.
o

 2, pp. 1385-

1401, ene. 2013.

[12] R. Kalman, «A New Approach to Linear Filtering and Prediction

Problems», Trans. Asme – J. Basic Eng., n.
o

 82 (Series D), pp. 35-

45, 1960.

233

